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Abstract: One of the features of Baxter’s Q-operators for many closed spin chain mod-
els is that all transfer matrices arise as products of two Q-operators with shifts in the
spectral parameter. In the representation-theoretical approach to Q-operators, underlying
this is a factorization formula for L-operators (solutions of the Yang–Baxter equation
associated to particular infinite-dimensional representations). To extend such a formal-
ism to open spin chains, one needs a factorization identity for solutions of the reflection
equation (boundary Yang–Baxter equation) associated to these representations. In the
case of quantum affine sl2 and diagonal K-matrices, we derive such an identity using
the recently formulated theory of universal K-matrices for quantum affine algebras.
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1. Introduction

1.1. Background and overview. Baxter first introduced his Q-operator in [Ba72,Ba73]
as an auxiliary tool in the derivation of Bethe Equations for the eigenvalues of the 8-
vertex model transfer matrix. The key characters in the story are the transfer matrix T (z)
and the Q-operator Q(z). A detailed description of the essential properties of T (z) and
Q(z) can be found in [BLZ97] (also see [VW20] and references therein); the key relation
that they satisfy that leads directly to the Bethe equations is of the form

T (z)Q(z) = α+(z)Q(qz) + α−(z)Q(q−1z), (1.1)

where α±(z) are meromorphic functions and q ∈ C
× is not a root of unity.

In the original papers of Baxter, the operator Q(z) was constructed by a brilliant but
ad hoc argument; the representation-theoretic construction ofQ(z) had to wait more than
20 years until the work of Bazhanov, Lukyanov and Zamolodchikov [BLZ96,BLZ97,
BLZ99]. The main idea of the latter approach is to construct both T (z) and Q(z) as
partial traces over different representations of the universal R-matrix R of Uq(̂sl2). The
operator T (z) is a twisted trace over a two-dimensional Uq(̂sl2)-representation �z , and
Q(z) is a similarly twisted trace over an infinite-dimensional Uq(̂b

+)-representation ρz ,
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where ̂b+ is the upper Borel subalgebra of ̂sl2 (the relevant representations are defined
in Sect. 4.4 of the current paper). The relation (1.1) for closed spin chains then follows
immediately by considering a short exact sequence (SES) of Uq(̂b

+)-representations
with �z ⊗ ρz as its ‘middle’ object (cf. [FR99, Lem. 2 (2)]). For an arbitrary untwisted
affine Lie algebra ĝ with upper Borel subalgebra ̂b+, the level-0 representation theory
of Uq(̂b

+) was studied in [HJ12]; for the general connection with the theory of Baxter’s
Q-operators see [FH15].

As well as this direct SES route to the equation, there is an alternative strategy which
we refer to as the factorization approach; for closed chains see [BS90,De05,DKK06,
De07,BJMST09,BLMS10]. In fact, this approach was the one taken by Bazhanov,
Lukyanov and Zamolodchikov. The work that developed this formalism in language
most similar to the current paper is [KT14].

In this approach, a second operator Q(z) with similar properties to Q(z) is intro-
duced as a trace of R over another infinite-dimensional representation �̄z of Uq(̂b

+).
The affinized version υz of the Uq(sl2)-Verma module is also considered as well as an-
other infinite-dimensional filtered Uq(̂b

+)-module φz ; these two representations depend
on a complex parameter μ. The key connection between all representations is given by
Theorem 4.4, which expresses the fact that particular pairwise tensor products are iso-
morphic as Uq(̂b

+)-modules by means of an explicit intertwiner O (defined in Sect. 4.5
of the current paper). At the level of the L-operators this implies

O12L�(q−μ/2z)13L�̄(qμ/2z)23 = Lυ(z)13Lφ(z)23O12, (1.2)

(see Theorem 5.2 of the current paper), which is referred to as factorization of the Verma
module L-operator Lυ(z) in terms of the L-operators L�(z) and L�̄(z) which are used
to define Q(z), Q(z) (the transfer matrix corresponding to the additional operator Lφ(z)
is trivial).

Defining Tμ(z) to be the transfer matrix that is the trace over the μ-dependent rep-
resentation υz of R in the first space, Theorem 5.2 yields a relation of the following
form:

Tμ(z) ∝ Q(zq−μ/2)Q(zqμ/2). (1.3)

The SES associated with υz in the case μ is an integer then leads to the key relation
(1.1).

1.2. Present work. In the current work we are interested in an analogue of (1.2) for open
chains, setting out an approach to Q-operators which complements the SES approach of
[VW20].

The problem of Q-operators for open XXZ chains with diagonal boundaries was
discussed in [BT18] and in [Ts21]. The XXX version of this problem was solved already
in [FS15]. Earlier, Baxter TQ-relations with more general boundary conditions were
found in [YNZ06] (XXZ) and [YZ06] (XYZ) by spin- j transfer matrix asymptotics.

Our main result is the following analogue of Theorem 5.2, which we call the boundary
factorization identity. Its existence answers in the positive a question raised in [BT18,
Sec. 5]:

Kυ(z)1Rυφ(z2)Kφ(z)2 O = OK�(q−μ/2z)1R��̄(z2)K�̄(qμ/2z)2 (1.4)
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where z is a formal parameter (which can be specialized to generic complex numbers).
The precise statement is given in Theorem 8.1. This formula involves the actions of
the universal R-matrix of Uq(̂sl2) in tensor products of the various infinite-dimensional
representations introduced. In addition, the various K-operators are diagonal solutions
of reflection equations (boundary Yang–Baxter equations) [Ch84,Sk88]. They arise as
actions of the universal K-matrix associated to the augmented q-Onsager algebra, a
particular coideal subalgebra of Uq(̂sl2), which featured also in e.g. [BB13,RSV15,
BT18,VW20]. More precisely, diagonal solutions of the reflection equation with a free
parameter, considered by Sklyanin in his 2-boundary version of the algebraic Bethe
ansatz in [Sk88], are intertwiners for this algebra.

Equation (1.4) has a natural diagrammatic formulation, see Sect. 8. In a subsequent
paper the authors will explain how (1.4) yields relations analogous to (1.3) and hence
(1.1) for open chains.

The proof of (1.4) and of the well-definedness of the various K-operators is an ap-
plication of the universal K-matrix formalism developed in [AV22a,AV22b] which is
built on the earlier works [BW18,BK19]. More precisely, it relies on an extension of the
theory of K-matrices for finite-dimensional representations of quantum affine algebras
in [AV22b] to level-0 representations of Uq(̂b

+), which we discuss in Sect. 3. The key
point is that, for the special case of the augmented q-Onsager algebra, there exists a
universal element K, centralizing the augmented q-Onsager algebra up to a twist, with
three desirable properties.

(i) The element K lies in (a completion of) the Borel subalgebra Uq(̂b
+), so that the

resulting family of linear maps is itself compatible withUq(̂b
+)-intertwiners (which

play an essential role in the algebraic theory of Baxter Q-operators).
(ii) The coproduct of K is of a particularly simple form, which is relevant for the proof

of the boundary factorization identity.
(iii) The linear operators accomplishing the action ofK in level-0 representations satisfy

the untwisted reflection equation.

Thus we obtain the factorization identity (1.4) as a natural consequence of the represen-
tation theory of Uq(̂sl2). The main benefit of this universal approach is that laborious
linear-algebraic computations are avoided; in particular, we not even need explicit ex-
pressions for the various factors. Nevertheless, we do provide these explicit expressions,
as we expect them to be useful in further work in this direction. We also give an alternative
computational proof of (1.4), to illustrate the power of the universal approach.

This is a ‘boundary counterpart’ to the level-0 theory of the universal R-matrix, which
we also include for reference. We do this in Sect. 2, staying close to the original work by
Drinfeld and Jimbo [Dr85,Dr86,Ji86a,Ji86b]. In particular, Theorem 2.4 states that the
grading-shifted universal R-matrix has a well-defined action as a linear-operator-valued
formal power series on any tensor product of level-0 representations of Uq(̂b

+) and
Uq(̂b

−) (including finite-dimensional representations). Often this well-definedness is
tacitly assumed, see e.g. [VW20, Sec. 2.3]. Alternatively, it follows from the Khoroshkin-
Tolstoy factorization [KT92] of the universal R-matrix, see also [BGKNR10,BGKNR13,
BGKNR14]; however we are unaware of such a factorization for the universal K-matrix.

1.3. Outline. In Sect. 2 we study the action of the universal R-matrix of quantum affine
sl2 on tensor products of level-0 representations of Borel subalgebras. Section 3 is a
‘boundary counterpart’ to Sect. 2, where we consider the augmented q-Onsager algebra.
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We show that its (semi-)standard universal K-matrix, see [AV22a,AV22b], has a well-
defined action on level-0 representations ofUq(̂b

+), see Theorem 3.6, and, with a simple
correction, satisfies the above three desirable properties.

In Sect. 4 we discuss the relevant representations of Uq(̂b
+) in terms of (an extension

of) the q-oscillator algebra, as well as the Uq(̂b
+)-intertwiner O. Various solutions of

Yang–Baxter equations are obtained in Sect. 5 as actions of the universal R-matrix in
tensor products of Borel representations. Similarly, in Sect. 6 we introduce solutions of
the reflection equation as actions of the universal K-matrix in Borel representations.

We revisit the SES approach to Baxter’s Q-operators for the open XXZ spin chain
in light of the universal K-matrix formalism in Sect. 7. Next, in Sect. 8 we give a dia-
grammatic motivation of the boundary factorization identity (1.4) for the open XXZ spin
chain, and provide a short proof using the level-0 theory developed in Sect. 3. Finally,
in Sect. 9 we summarize the main results and point out future work.

Some supplementary material is given in appendices. Namely, Appendix A provides
some background material on deformed Pochhammer symbols and exponentials. More-
over, Appendix B contains derivations of the explicit expressions of the two R-operators
appearing in (1.4). In Appendix C we provide a computational alternative proof of the
boundary factorization identity (1.4), relying on the explicit expressions of all involved
factors. The key tool of this proof is provided by Lemma C.1, which consists in two
product formulas involving deformed Pochhammer symbols and exponentials. We em-
phasize that the main text and its results do not rely on Appendices B and C.

2. Quantum Affine sl2 and its Universal R-Matrix

In this section we study the action of the universal R-matrix of the quasitriangular
Hopf algebra quantum affine sl2 on tensor products of level-0 representations (including
infinite-dimensional representations) of the Borel subalgebras. We give a basic survey
of the algebras involved, the representations and the quasitriangular structure and show
that the universal R-matrix has a well-defined action on tensor products of all level-0
representations of the Borel subalgebras.

2.1. General overview of finite-dimensional R-matrix theory. To formulate a quantum
integrable system in terms of a transfer matrix built out of R-matrices, one needs finite-
dimensional representations of a suitable quasitriangular Hopf algebra. To get trigono-
metric R-matrices, one can proceed as follows.

Let g be a finite-dimensional simple Lie algebra and note that the untwisted loop
algebra Lg = g ⊗ C[t, t−1] has a central extension ĝ = Lg ⊕ Cc. In turn, this can be
extended to g̃ = ĝ ⊕ Cd where d satisfies [d, ·] = t d

dt . For a fixed Cartan subalgebra
h ⊂ g we define

̂h := h ⊕ Cc, ˜h := ̂h ⊕ Cd.

The Lie algebra g̃ is a Kac–Moody algebra and hence has a non-degenerate bilinear form
(·, ·), which restricts to a non-degenerate bilinear form on ˜h. See e.g. [Ka90] for more
detail.

The universal enveloping algebras U (̂g) and U (̃g) can be q-deformed, yielding non-
cocommutative Hopf algebras (Drinfeld-Jimbo quantum groups) Uq (̂g) and Uq (̃g), see
e.g. [Dr85,Dr86,Ji86a,KT92,Lu94]. The nondegenerate bilinear form (·, ·) lifts toUq (̃g)
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inducing a pairing between the q-deformed Borel subalgebras and hence a quasitrian-
gular structure. On the other hand, the subalgebra Uq (̂g) has a rich finite-dimensional
representation theory, see e.g. [CP94,CP95,Ch02,HJ12]. The grading-shifted universal
R-matrix has a well-defined action on tensor products of finite-dimensional represen-
tations of Uq (̂g) as a formal power series, see e.g. [Dr86,FR92,KS95,EM03,He19]).
We now discuss the natural extension of this theory to level-0 representations of Borel
subalgebras, including various infinite-dimensional representations. We will restrict to
the case g = sl2 (but the theory generalizes to any quantum untwisted affine algebra).

2.2. Quantum affine sl2. Denoting the canonical Cartan generator of sl2 by h1, ̂h is
spanned by h0 = c − h1 and h1. The bilinear form on˜h is defined by

(h0, h0) = (h1, h1) = −(h0, h1) = 2, (h0, d) = 1, (h1, d) = (d, d) = 0.

Fix ε ∈ C such that q = exp(ε) is not a root of unity. For all μ ∈ C we will denote
exp(εμ) by qμ. First, we define Uq(g) as the algebra generated over C by e, f and
invertible k subject to the relations

ke = q2ek, k f = q−2 f k, [e, f ] = k − k−1

q − q−1 . (2.1)

The following assignments determine a coproduct � : Uq(g) → Uq(g) ⊗Uq(g):

�(e) = e ⊗ 1 + k ⊗ e, �( f ) = f ⊗ k−1 + 1 ⊗ f, �(k±1) = k±1 ⊗ k±1.

(2.2)

It uniquely extends to a Hopf algebra structure on Uq(g). Now the main algebra of
interest, Uq (̂g), arises as follows.

Definition 2.1 (Quantum affine sl2). We denote by Uq (̂g) the Hopf algebra generated
by two triples {ei , fi , ki } (i ∈ {0, 1}), such that:

(i) the following assignments for i ∈ {0, 1} define Hopf algebra embeddings fromUq(g)
to Uq (̂g):

e �→ ei , f �→ fi , k �→ ki ; (2.3)

(ii) the following cross relations are satisfied:

ki k j = k j ki , ki e j = q−2e j ki , ki f j = q2 f j ki , [ei , f j ] = 0, (2.4)

[ei , [ei , [ei , e j ]q2 ]1]q−2 = [ fi , [ fi , [ fi , f j ]q2 ]1]q−2 = 0, (2.5)

for i 	= j , where we have introduced the notation [x, y]p := xy − pyx . �
Consider the affine Cartan subalgebra ̂h = Ch0 ⊕ Ch1. Note that its q-deformation

Uq(̂h) = 〈k±1
0 , k±1

1 〉 is isomorphic to the group algebra of the affine co-root lattice

̂Q∨ = Zh0 + Zh1 ⊂ ̂h. (2.6)

The nontrivial diagram automorphism � of the affine Dynkin diagram, i.e. the nontrivial
permutation of the index set {0, 1}, lifts to a linear automorphism � of̂h which preserves
the lattice ̂Q∨. Accordingly, it also lifts to an involutive Hopf algebra automorphism of
Uq (̂g), also denoted �, via the assignments

�(ei ) = e�(i), �( fi ) = f�(i), �(k±1
i ) = k∓1

�(i) for i ∈ {0, 1}. (2.7)
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2.3. Quantized Kac–Moody algebra. To define the quantized Kac–Moody algebra
Uq (̃g), one chooses an extension ˜Q∨ of ̂Q∨ (a lattice of rank 3 contained in ˜h) pre-
served by �.

Remark 2.2. The standard extension of the affine co-root lattice Zh0 + Zh1 + Zd is not
so convenient for us, mainly in view of the construction of the universal K-matrix in
Sect. 3.3. Namely, extensions of � to˜h which are compatible with the bilinear form on
˜h do not preserve this lattice, see also [Ko14, Sec. 2.6] and [AV22a, Sec. 3.14]. �

The most convenient choice is to use the principal grading and set

dpr := −1

8
h0 +

3

8
h1 + 2d ∈ h, (2.8)

so that

(dpr, h0) = (dpr, h1) = 1, (dpr, dpr) = 0.

Now we set �(dpr) = dpr and obtain a linear automorphism � of˜h preserving the lattice

˜Q∨ := Zh0 + Zh1 + Zdpr.

The corresponding dual map on ˜h∗, also denoted by �, preserves the extended affine
weight lattice

˜P = {λ ∈ ˜h∗ | λ(˜Q∨) ⊆ Z}. (2.9)

Accordingly, we define Uq (̃g) as the Hopf algebra obtained by extending Uq (̂g) by
a group-like element1 g satisfying

gei = qei g, g fi = q−1 fi g, gki = ki g. (2.10)

Hence, the assignment �(g) = g together with (2.7) defines an involutive Hopf algebra
automorphism of Uq (̃g).

2.4. Co-opposite Hopf algebra structure. For any C-algebra A, denote by σ the algebra
automorphism of A ⊗ A which sends a ⊗ a′ to a′ ⊗ a for all a, a′ ∈ A. If X ∈ A ⊗ A
we will also write X21 for σ(X).

If A is a bialgebra with coproduct �, the co-opposite bialgebra, denoted Acop, is
the bialgebra with the same underlying algebra structure and counit as A but with �

replaced by

�op := σ ◦ � (2.11)

(if A is a Hopf algebra with invertible antipode S, then Acop is also a Hopf algebra with
antipode S−1). The assignments

ω(ei ) = fi , ω( fi ) = ei , ω(k±1
i ) = k∓1

i for i ∈ {0, 1}, ω(g) = g−1

(2.12)

define a bialgebra isomorphism from Uq (̃g) to Uq (̃g)
cop (in particular, (ω ⊗ ω) ◦ � =

�op ◦ ω) which commutes with �.

1 It is equal to exp(εdpr) if we define Uq (̃g) as a topological Hopf algebra over C[[ε]].
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2.5. Weight modules. We review some basic representation-theoretic notions for Uq (̃g)
by means of which its universal R-matrix can be described. Consider the commutative
subalgebra

Uq(˜h) = 〈k±1
0 , k±1

1 , g±1〉 ⊂ Uq (̃g). (2.13)

Call a Uq (̃g)-module M a Uq(˜h)-weight module if

M =
⊕

λ∈˜P

Mλ, Mλ = {m ∈ M | ki · m = qλ(hi )m for i ∈ {0, 1}, g · m = qλ(dpr)m}.

Elements of Mλ are said to have weight λ. The adjoint action ofUq (˜h) (with its generators
acting by conjugation) endows Uq (̃g) itself with a Uq(˜h)-weight module structure, with
elements of Uq(˜h) of weight 0. More precisely, the weights of Uq (̃g) are given by the
affine root lattice

̂Q := Zα0 + Zα1 ⊂ ˜P

(ei has weight αi , fi has weight −αi ). The adjoint action of Uq(˜h) preserves the subal-
gebras

Uq (̂n
+) = 〈e0, e1〉, Uq (̂n

−) = 〈 f0, f1〉 (2.14)

and the corresponding weights are given by the monoids ±̂Q+ respectively, where ̂Q+ :=
Z�0α0 + Z�0α1.

2.6. Quasitriangularity. The universal R-matrix forUq (̃g) is an element of a completion
of Uq (̃g) ⊗Uq (̃g) satisfying

R�(u) = �op(u)R for all u ∈ Uq (̃g), (2.15)

(� ⊗ id)(R) = R13R23, (id ⊗ �)(R) = R13R12 (2.16)

and hence

R12R13R23 = R23R13R12. (2.17)

Consider the quantum analogues of the Borel subalgebras, which are the Hopf subalge-
bras

Uq(˜b
±) = 〈Uq(˜h),Uq (̂n

±)〉.
The element R arises as the canonical element of the bialgebra pairing between Uq(˜b

+)

and the algebra Uq(˜b
−)op (the bialgebra isomorphic as a coalgebra to Uq(˜b

−) but with
the opposite multiplication), see [Dr85,Lu94]. In particular, R lies in a completion of
Uq(˜b

+) ⊗Uq(˜b
−). Further, invariance properties of the bialgebra pairing imply

(ω ⊗ ω)(R) = R21, (2.18)

(� ⊗ �)(R) = R. (2.19)
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Also, this pairing has a non-degenerate restriction toUq (̂n
+)λ×Uq (̂n

−)−λ for all λ ∈ ̂Q+;
denote the canonical element of this restricted pairing by �λ. With our choice of the
coproduct we have

R = �−1 · κ−1, � =
∑

λ∈̂Q+

�λ, (2.20)

A priori, � acts naturally on Uq (̃g)-modules with a locally finite action of Uq (̂n
+) or

Uq (̂n
−). We briefly explain one possible definition2 of the element κ . The non-degenerate

bilinear form (·, ·) on ˜h induces one on ˜h∗, which we denote by the same symbol. If
M, M ′ are Uq(˜h)-weight modules we define a linear map κM : M ⊗ M ′ → M ⊗ M ′ by
stipulating that it acts on Mλ ⊗ M ′

λ′ (λ, λ′ ∈ ˜P) as multiplication by q(λ,λ′). The family
of these maps κM , where M runs through all Uq(˜h)-weight modules, is compatible
with Uq(˜h)-intertwiners. Hence it gives rise to a well-defined weight-0 element κ of
the corresponding completion of Uq (̃g) ⊗Uq (̃g) which we call here weight completion.
Similarly, we will define weight-0 elements of the weight completion of Uq (̃g) itself
using functions from ˜P to C. See also [AV22a, Sec. 4.8] for more detail.

2.7. Level-0 representations. Consider the following subalgebras of Uq (̂g):

Uq(̂b
±) = 〈Uq(̂h),Uq (̂n

±)〉 = Uq(˜b
±) ∩Uq (̂g). (2.21)

Then Uq(̂b
+) is isomorphic to the algebra with generators ei , ki (i ∈ {0, 1}) subject to

those relations in Definition 2.1 which do not involve the fi (the proof of e.g. [Ja96,
Thm. 4.21] applies). We say that a Uq(̂b

+)-module V is level-0 if it decomposes as

V =
⊕

c∈C×
V (c), V (c) = {v ∈ V | k0 · v = c−1v, k1 · v = cv} (2.22)

with each weight subspace V (c) finite-dimensional. Note that the class of finitely gen-
erated level-0 modules is closed under tensor products. By the Uq (̂g)-relations we
have e0 · V (c) ⊆ V (q−2c), e1 · V (c) ⊆ V (q2c). It is convenient to call the subset
{c ∈ C

× | dim(V (c)) 	= 0} the support of V . If V is a finite-dimensional Uq (̂g)-module
then it is level-0 with support contained in ±qZ, see e.g. [CP95, Prop. 12.2.3].

Remark 2.3. TheUq (̂g)-action on a nontrivial finite-dimensional module does not extend
to aUq (̃g)-action. By [HJ12, Prop. 3.5], this is a special case of the following observation.
If V is an irreducible level-0 Uq(̂b

+)-module with dim(V ) > 1, then the Uq(̂b
+)-action

does not extend to aUq(˜b
+)-action. To see this, choose distinct c, c′ ∈ C

× in the support
of V . By irreducibility, for any nonzero v ∈ V (c), v′ ∈ V (c′) there exist x, x ′ ∈ Uq(̂b

+)

such that x · v = v′, x ′ · v′ = v. Without loss of generality, we may assume both x and
x ′ have no term in Uq(̂h). Hence x ′x is not a scalar. For any nonzero v ∈ V (c), since
the action of g preserves V (c), applying g to (x ′x) · v = v now yields a contradiction
with (2.10). �

Analogous definitions and comments can be made for Uq(̂b
−)-modules.

2 Note that in the topological Hopf algebra setting one simply has κ = qc⊗d+d⊗c+h1⊗h1/2.
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2.8. The action of R on tensor products of level-0 modules. We wish to connect the
quasitriangular structure ofUq (̃g) with the level-0 representation theory ofUq (̂g), i.e. let
the universal R-matrix ofUq (̃g) act on tensor products of level-0 modules. To do this, we
follow the ideas from [Dr86, Sec. 13] (also see [FR92, Sec. 4], [He19, Sec. 1]). If we write
the action of k1 on an arbitrary level-0 module V as exp(εHV ), then note that the factor
κ naturally acts on tensor products V ⊗ V ′ of level-0 modules as exp(εHV ⊗ HV ′/2).

To let � act on such tensor products, we extend the field of scalars C to the Laurent
polynomial ring C[z, z−1], where z is a formal parameter. The action of � is particu-
larly well-behaved if we use the principal grading. That is, we define a Hopf algebra
automorphism �z of Uq (̃g)[z, z−1] such that

�z(ei ) = zei , �z( fi ) = z−1 fi , �z |Uq (˜h) = id. (2.23)

Straightforwardly one sees that

ω ◦ �z = �z−1 ◦ ω, (2.24)

� ◦ �z = �z ◦ �. (2.25)

Let the height function ht : ̂Q → Z be defined by ht(m0α0 + m1α1) = m0 + m1 for all
m0,m1 ∈ Z and note that the number of elements of ̂Q+ of given height is finite. The
key observation is that

(�z ⊗ id)(�) = (id ⊗ �z−1)(�) =
∑

r�0

zr
∑

λ∈̂Q+,ht(λ)=r

�λ, (2.26)

is a formal power series in z whose coefficients are finite sums and hence lie inUq (̂n
+)⊗

Uq (̂n
−). Hence (�z ⊗ id)(�) = (id ⊗ �z−1)(�) has a well-defined action as a linear-

operator-valued formal power series on a tensor product of any Uq (̂n
+)-representation

with any Uq (̂n
−)-representation. Consider now the grading-shifted universal R-matrix:

R(z) := (�z ⊗ id)(R) = (id ⊗ �z−1)(R). (2.27)

Note that by applying �z ⊗ id to (2.15) we deduce that R(z) commutes with �(k1) =
�op(k1) = k1 ⊗ k1. We collect the results obtained thus far, writing

M[[z]] = M ⊗ C[[z]]

for any complex vector space M (in particular, any complex unital associative algebra).

Theorem 2.4. Consider a pair of level-0 representations π± : Uq(̂b
±) → End(V±).

Then3

Rπ+π−(z) := (π+ ⊗ π−)(R(z)) ∈ End(V + ⊗ V−)[[z]] (2.28)

is well-defined and commutes with (π+ ⊗ π−)(�(k1)) = π+(k1) ⊗ π−(k1).

3 Note that in Sect. 5 we will use the notation Rπ+π− (z) for a rescaled version of the action of the grading-
shifted universal R-matrix.
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From now on we will use the standard convention that if π is any level-0 representation
then the corresponding grading-shifted representation is denoted by a subscript z:

πz := π ◦ �z . (2.29)

Hence we may write

Rπ+π−(z) = (π+
z ⊗ π−)(R) = (π+ ⊗ π−

1/z)(R).

Consider two indeterminates z1, z2. Applying, say, �z1 ⊗ id⊗�1/z2 , to (2.17), we obtain
a C[[z1, z2]]-version of the universal Yang–Baxter equation which can be evaluated on
suitable triple tensor products.

Proposition 2.5. If π+ : Uq(̂b
+) → End(V +), π : Uq (̂g) → End(V ) and π− :

Uq(̂b
−) → End(V−) are level-0 representations, then we have the following identity of

linear-operator-valued formal power series in two indeterminates:

Rπ+π (z1)12 Rπ+π−(z1z2)13 Rππ−(z2)23 =Rππ−(z2)23 Rπ+π−(z1z2)13 Rπ+π (z1)12.

(2.30)

Given a pair of level-0 representations π± : Uq(̂b
±) → End(V±) it is often conve-

nient to have an explicit expression of Rπ+π−(z) which does not rely on computing the
coefficients of the series R(z). Essentially following Jimbo’s approach from [Ji86b], we
may try to solve a linear equation for Rπ+π−(z). To derive such a linear equation, it is
convenient to assume that, say, π+ extends to a representation of Uq (̂g). In this case4,
one directly obtains the following result.

Proposition 2.6. If π+ is a level-0 Uq (̂g)-representation and π− a level-0 Uq(̂b
−)-

representation, then for all u ∈ Uq(̂b
−) we have

Rπ+π−(z) · (π+
z ⊗ π−)(�(u)) = (π+

z ⊗ π−)(�op(u)) · Rπ+π−(z). (2.31)

Obviously there is a counterpart of Proposition 2.6 with the role of Uq(̂b
−) replaced by

Uq(̂b
+).

Remark 2.7. If the solution space of the linear equation (2.31) is 1-dimensional, Proposi-
tion 2.6 implies that any solution must be a scalar multiple ofRπ+π−(z) and hence satisfy
the Yang–Baxter equation. This is well-known if both V± extend to finite-dimensional
Uq (̂g)-modules. In this case the existence of the universal R-matrix implies the exis-
tence of a solution of the intertwining condition (2.31) depending rationally on z. If π+

and π− are also both irreducible then it is known, see e.g. [KS95, Sec. 4.2] and [Ch02,
Thm. 3], that V +((z)) ⊗ V− is irreducible as a representation of Uq (̂g)((z)) (extension
of scalars to formal Laurent series); hence an application of Schur’s lemma yields the
1-dimensionality of the solution space of (2.31). In this case, the rational intertwiner
is called trigonometric R-matrix. For more background and detail, see e.g. [He19] and
[AV22b, Secs. 2.6 & 2.7].

In the absence of a linear relation such as (2.31), one can use the Yang–Baxter equation
(2.30) to determine an explicit expression for one of Rπ+π (z), Rπ+π−(z), or Rππ−(z),
provided the other two are known. �

4 One can of course apply π+
z ⊗ π− to (2.15) for arbitrary Uq (̂b±)-representations π±, yielding (2.31)

for all u ∈ Uq (̂g) such that �(u) and �op(u) both lie in Uq (̂b+) ⊗ Uq (̂b−). However, by applying counits
this subalgebra is seen to be equal to Uq (̂b+) ∩ Uq (̂b−) = Uq (̂h). Hence, one would just recover the second
statement of Theorem 2.4.
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2.9. Adjusting the grading. In this approach the use of the principal grading in Theorem
2.4 avoids further constraints on the representations (e.g. local finiteness conditions).
For completeness we briefly explain how to extend the results of Sect. 2.8 to arbitrary
grading. For nonnegative integers s0, s1 such that s0 +s1 is nonzero, define a more general
Hopf algebra automorphism �

s0,s1
z of Uq (̃g)[z, z−1] by

�s0,s1
z (ei ) = zsi ei , �s0,s1

z ( fi ) = z−si fi , �s0,s1
z |Uq (˜h) = id (2.32)

(note that the choice s0 = 0, s1 = 1 is used in in [KT14, Eq. (2.11)]).
Rather than giving generalized versions of the main results above and of various

statements in the remainder of this work, we make an observation which will allow
the reader to generate these statements, as required. Recalling the decomposition (2.22)
and the associated terminology, suppose the level-0 Uq(̂b

+)-module V is generated by
a nonzero element of V (c0) for some c0 ∈ C

× (which includes all modules considered
in this paper and all irreducible finite-dimensional Uq (̂g)-modules). Then the support
of V , see Sect. 2.7, is contained in q2Zc0. Now for any indeterminate y and any integer
m, let ymD denote the linear map on V which acts on V (q−2mc0)[y, y−1] as scalar
multiplication by ym .

Writing the corresponding representation as π : Uq(̂b
+) → End(V ), the more gen-

eral grading-shifted representation π
s0,s1
z := π ◦ �

s0,s1
z can be related to the representa-

tion shifted by the principal grading as follows. Adjoining to the ring C[z, z−1] a square
root Z of z, we have

π s0,s1
z = Ad

(

Z (s0−s1)D
) ◦ πZs0+s1 , (2.33)

where on the right-hand side Ad stands for ‘conjugation by’. See [AV22b, Sec. 5.2]
for essentially the same point in the context of irreducible finite-dimensional Uq (̂g)-
representations.

3. The Augmented q-Onsager Algebra, its Twist and its Universal K-Matrix

In parallel with the previous section, we consider a particular subalgebra of Uq (̂g) and
extend some recent results on universal K-matrices [AV22a,AV22b] in the context of
(possibly infinite-dimensional) level-0 representations of Borel subalgebras of quan-
tum affine sl2. For a related approach tailored to evaluation representations involving
essentially the same subalgebra, see [BT18].

3.1. The twist map ψ . We consider the following algebra automorphism and coalgebra
antiautomorphism of Uq (̃g):

ψ := ω ◦ �. (3.1)

From (2.18–2.19) and (2.24–2.25), respectively, we immediately deduce

(ψ ⊗ ψ)(R) = R21, (3.2)

ψ ◦ �z = �z−1 ◦ ψ. (3.3)

By the following result, P-symmetric R-matrices (R(z)21 = R(z)) naturally arise in
tensor products of representations of the upper and lower Borel subalgebras on the same
vector space, provided they are related through ψ and the principal grading is used in
the definition of grading-shifted universal R-matrix R(z), see (2.27).
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Lemma 3.1. Consider twopairs of level-0 representationsπ±, �± : Uq(̂b
±) → End(V )

such that

�∓ = π± ◦ ψ. (3.4)

Then Rπ+π−(z)21 = R�+�−(z).

Proof. Unpacking the definitions (2.28) and (2.27), we have

Rπ+π−(z)21 =
(

(

(π+ ⊗ π−) ◦ (�z ⊗ id)
)

(R)
)

21
= (

(π− ⊗ π+) ◦ (id ⊗ �z)
)(

R21
)

.

Now using (3.2–3.3) we deduce

Rπ+π−(z)21 = (

(π− ⊗ π+) ◦ (ψ ⊗ ψ) ◦ (id ⊗ �z−1)
)

(R).

Applying (3.4) and using (2.28) and (2.27) once again, we obtainR�+�−(z) as required. ��

3.2. The augmented q-Onsager algebra. The map ψ plays an important role in the
theory of diagonal matrix solutions with a free parameter of the reflection equation in
Uq (̂g)-modules. Namely, fix a parameter ξ ∈ C

× and consider the following subalgebra
of Uq (̂g), also called the (embedded) augmented q-Onsager algebra:

Uq(k) := C
〈

e0 − q−1ξ−1k0 f1, e1 − q−1ξk1 f0, k0k
−1
1 , k−1

0 k1
〉

. (3.5)

This is a left coideal:

�(Uq(k)) ⊆ Uq (̂g) ⊗Uq(k). (3.6)

The automorphism ψ is the trivial q-deformation of a Lie algebra automorphism of ĝ,
also denoted ψ , and Uq(k) is the (ξ -dependent) coideal q-deformation of the universal
enveloping algebra of the fixed-point subalgebra k = ĝψ , in the style of [Ko14] but with
opposite conventions.

Remark 3.2. See [VW20, Rmk. 2.3] for more background on this subalgebra. Note that
the definition of Uq(k) in loc. cit. has a misprint: ξ should be replaced by ξ−1. �

To connect with the universal K-matrix formalism of [AV22a,AV22b], let ˜S be the
bialgebra isomorphism5 fromUq (̃g) toUq (̃g)

op,cop (also known as the unitary antipode)
defined by the assignments

˜S(ei ) = −qk−1
i ei , ˜S( fi ) = −q−1 fi ki , ˜S(k±1

i ) = k∓1
i , ˜S(g±1) = g∓1. (3.7)

Note that ˜S2 = id. Now consider6 the right coideal subalgebra

Uq(k)
′ = ˜S(Uq(k)) = C〈 f0 − qξ−1e1k

−1
0 , f1 − qξe0k

−1
1 , k0k

−1
1 , k−1

0 k1〉
which is the subalgebra considered in [AV22a, Sec. 9.7], forming part of a more general
family of right coideal subalgebras (quantum symmetric pair subalgebras) of quantum
affine algebras as considered in [Ko14,AV22a,AV22b].

5 In particular, ˜S, like the antipode S itself, is an algebra antiautomorphism and a coalgebra antiautomor-
phism.

6 In general, each element or map in the right coideal setting of [Ko14,AV22a,AV22b] is denoted by a
prime on the corresponding object in the current left coideal setting.
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3.3. Universal K-matrix. By [AV22a, Thm. 8.5], Uq (̃g) is endowed with a so-called
standard universal K-matrix, which is an invertible element in a completion of Uq(˜b

+)

satisfying a twisted Uq(k)-intertwining property and a twisted coproduct formula in-
volving the universal R-matrix7

R′ = R−1
21 . (3.8)

There is an action of invertible elements of a completion of Uq (̃g), gauge-transforming
the universal K-matrix and the twisting operator simultaneously, see [AV22b, Sec. 3.6].
For the case under consideration, there exists a gauge transformation (a ‘Cartan cor-
rection’, see [AV22a, Sec. 8.8]) that brings both the intertwining property and the co-
product formula for the universal K-matrix into a particularly nice form. Moreover, the
gauge-transformed universal K-matrix still resides in a completion of Uq(˜b

+) and, when
shifted by the principal grading, acts as a linear-operator-valued formal power series for
all level-0 Uq(̂b

+)-modules.
To make this more precise, let � : ˜P → C

× be any group homomorphism such that
�(α0) = −ξ and �(α1) = −ξ−1. Now define a function G ′ : ˜P → C

× by

G ′(λ) = �(λ)q−(�(λ),λ)/2. (3.9)

Note that this is not a group homomorphism. Define the corresponding linear operator
acting on Uq(˜h)-weight modules as follows:

G ′ · v = G ′(λ)v, v ∈ Vλ, λ ∈ ˜P. (3.10)

Analogously to our definition of the factor κ of the universal R-matrix, we thus obtain
an invertible element G ′ of the weight completion of Uq (̃g). Finally, let δ = α0 + α1
be the basic imaginary root of ĝ. Then the following result is a special case of [AV22a,
Sec. 9.7], with the coproduct formula a direct consequence of [AV22a, (8.21)].

Proposition 3.3. There exists an invertible element

ϒ ′ =
∑

λ∈Z�0δ

ϒ ′
λ, ϒ ′

λ ∈ Uq (̂n
+)λ, (3.11)

such that the invertible element

K′ := G ′ · ϒ ′ (3.12)

satisfies

K′ · u = ψ(u) · K′ for all u ∈ Uq(k)
′, (3.13)

�(K′) = (1 ⊗ K′) · (ψ ⊗ id)(R′) · (K′ ⊗ 1). (3.14)

Remark 3.4. In general, a universal K-matrixK′ satisfying the simple 3-factor coproduct
formula (3.14) is called semi-standard, see [AV22a, Sec. 8.10] and cf. [AV22b, Ex. 3.6.3
(2)]. It corresponds to a particular choice of a twist pair (ψ, J ) where ψ is a bialgebra
isomorphism from Uq (̃g) to Uq (̃g)

cop (essentially the composition of ω with a diagram
automorphism determined by the coideal subalgebra) and J is the trivial Drinfeld twist

7 Note that our convention for the coproduct is as in [AV22a], but the ordering of the tensor product of the
two Borel subalgebras is opposite. Hence the R-matrix in [AV22a], denoted here by R′, is equal to R−1

21 .
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1 ⊗ 1, see [AV22a, Sec. 2.4 and 2.5]. The semi-standard K-matrix is always available;
what is rather special in the case of the augmented q-Onsager algebra is that the semi-
standard K-matrix coincides with the standard K-matrix (and hence lies in a completion
of Uq(˜b

+)). �
Now we transform this formalism [AV22a] for the right coideal subalgebra Uq(k)

′,
expressed in terms of the universal R-matrix R′, to a formalism for the left coideal
subalgebra Uq(k) = ˜S(Uq(k)

′), expressed in terms of the universal R-matrix R as used
in this paper. To do this, note that, when going from a Uq (̃g)-weight module to its dual,
weights transform as λ �→ −λ. This defines the extension of S and ˜S to a map on the
weight completion of Uq (̃g). Therefore ˜S(�) = �−1 but the non-group-like factor of
G ′ is fixed by ˜S. We define G : ˜P → C

× by

G(λ) := �(λ)q(�(λ),λ)/2 (3.15)

so that G = ˜S(G ′)−1. Also, we set

ϒ := ˜S(ϒ ′)−1 =
∑

λ∈Z�0δ

ϒλ, ϒλ ∈ ˜S(Uq (̂n
+)λ) ⊂ Uq(̂h) ·Uq (̂n

+)λ. (3.16)

Proposition 3.5. The element

K := ˜S(K′)−1 = G · ϒ (3.17)

satisfies

K · u = ψ(u) · K for all u ∈ Uq(k), (3.18)

�(K) = (K ⊗ 1) · (id ⊗ ψ)(R) · (1 ⊗ K). (3.19)

Proof. This follows straightforwardly from Proposition 3.3. Namely, we apply ˜S to
(3.13) and (˜S⊗˜S)◦σ to (3.14), and use the fact that˜S◦ψ = ψ◦˜S and (˜S⊗˜S)(R) = R. ��

Note that Uq(̂b
+) is a bialgebra and, as expected, the right-hand side of (3.19) lies

in a completion of Uq(̂b
+) ⊗ Uq(̂b

+), since ψ interchanges the two Borel subalgebras
Uq(̂b

±). The reflection equation satisfied by the universal element K is as follows:

R·(K ⊗ 1) · (id ⊗ ψ)(R) · (1 ⊗ K)=(1 ⊗ K) · (id ⊗ ψ)(R) · (K ⊗ 1) · R. (3.20)

This is a consequence of the linear relation (2.15) forR and the coproduct formula (3.19)
for K, alongside (3.2) and ψ2 = id.

3.4. The action of the universal K-matrix on level-0 representations. To deduce that K
has a well-defined action on level-0 representations of, say, Uq(̂b

+), we can proceed in
a similar way to the case of the R-matrix. This builds on the finite-dimensional theory
for more general quantum symmetric pair subalgebras in [AV22b, Sec. 4].

First note that if π is a level-0 representation, π and the twisted representation π ◦ψ

coincide on Uq(̂h). Now let z once again be a formal variable. Note that by (3.15) the
function G sends the basic imaginary root δ to 1. Hence the proof of [AV22b, Prop. 4.3.1
(3)] implies that the corresponding factor G of the universal K-matrix descends to level-0
modules. Furthermore, the argument that shows �z(�) is a Uq (̂n

+) ⊗ Uq (̂n
−)-valued
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formal power series can be easily adapted to ϒ ; it yields a formal power series with
coefficients in ˜S(Uq (̂n

+)) ⊂ Uq(̂b
+):

�z(ϒ) =
∑

r�0

zr
∑

λ∈Z�0δ,ht(λ)=r

ϒλ.

Now consider the grading-shifted universal K-matrix:

K(z) = �z(K). (3.21)

Noting that the form of ϒ implies thatK commutes with k1, we arrive at the following
main result, which is a boundary analogue of Theorem 2.4.

Theorem 3.6. Consider a level-0 representation π : Uq(̂b
+) → End(V ). Then8

Kπ (z) := π(K(z)) ∈ End(V )[[z]] (3.22)

is well-defined and commutes with π(k1).

We will also need boundary counterparts of Propositions 2.5 and 2.6. Consider two
indeterminates z1, z2. Applying �z1 ⊗ �z2 to (3.20) and using (3.3), we obtain the
following reflection equation for the grading-shifted universal operators:

R(z1/z2) · (K(z1) ⊗ 1) · (id ⊗ ψ)(R(z1z2)) · (1 ⊗ K(z2)) =
= (1 ⊗ K(z2)) · (id ⊗ ψ)(R(z1z2)) · (K(z1) ⊗ 1) · R(z1/z2). (3.23)

Recalling that the universal R-matrix R lies in a completion of Uq(̂b
+) ⊗ Uq(̂b

−) and
applying a tensor product of suitable representations to (3.23), one obtains the right
reflection equation with multiplicative spectral parameters for P-symmetric R-matrices,
as we now state precisely.

Proposition 3.7. Consider level-0 representations π+ : Uq(̂b
+) → End(V +) and π :

Uq (̂g) → End(V ) such that π ◦ ψ = π . Then

Rπ+π (z1/z2)(Kπ+(z1) ⊗ IdV )Rπ+π (z1z2)(IdV + ⊗ Kπ (z2)) =
= (IdV + ⊗ Kπ (z2))Rπ+π (z1z2)(Kπ+(z1) ⊗ IdV )Rπ+π (z1/z2). (3.24)

The use of linear relations to find explicit solutions of reflection equations was
proposed in [MN98,DG02,DM03]. As before, we assume that π extends to a Uq (̂g)-
representation,9 in which case it restricts to a Uq(k)-representation and we obtain the
following result as a consequence of (3.3).

Proposition 3.8. If π : Uq (̂g) → End(V ) is a level-0 representation such that π ◦ ψ =
π , then

Kπ (z) · πz(u) = π1/z(u) · Kπ (z) for all u ∈ Uq(k). (3.25)

We close this section with some comments parallel to Remark 2.7.

8 In Sect. 6 we will use this notation for a rescaled version of the action of the grading-shifted universal
K-matrix.

9 Analogous to the case of the R-matrix, we can observe that the intersection of Uq (k) and Uq (̂b+) is
contained in Uq (̂h). Therefore, applying a level-0 representation π to (3.18) just recovers the second part of
Theorem 3.6.
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Remark 3.9. If the solution space of (3.25) is 1-dimensional, Proposition 3.8 implies
that any solution must be a scalar multiple of K(z) and hence automatically satisfy
the reflection equation (3.24). In the case that π : Uq(̂b

+) → End(V ) extends to a
representation and V is finite-dimensional, there is an analogue to Remark 2.7. Namely,
the solution space of (3.25) for irreducible representations is 1-dimensional and the
existence of a solution of the intertwining condition (3.25) depending rationally on z
leads to a trigonometric K-matrix. See [AV22b, Secs. 5 and 6] for more detail.

To explicitly determine Kπ+(z) in the cases where π+ : Uq(̂b
+) → End(V ) does not

extend to a Uq (̂g)-representation, we will use the reflection equation (3.24), with the
other K-matrix Kπ (z) determined using Proposition 3.8. �
4. Borel Representations in Terms of the q-Oscillator Algebra

4.1. The infinite-dimensional vector space W. The countably-infinite-dimensional vec-
tor space plays a central role in the theory of Baxter’s Q-operators. We may define it as
the free C-module over a given set {w j } j∈Z�0 :

W =
⊕

j�0

Cw j . (4.1)

Given this distinguished basis, elements of End(W ) naturally identify with infinite-by-
infinite matrices with the property that all but finitely many entries of each column are
zero.

It is convenient to work with a particular subalgebra of End(W ) depending on the
deformation parameter q. More precisely, consider theC-linear maps a, a† on W defined
by

a · w j+1 = w j , a · w0 = 0, a† · w j = (

1 − q2( j+1)
)

w j+1 (4.2)

for all j ∈ Z�0. For the description of L-operators associated toUq (̂g) acting on W ⊗C
2

(particular solutions of the Yang–Baxter equation), it is convenient to consider a linear
operator qD which is a square root of 1 − a†a, i.e. qD · w j = q jw j for j ∈ Z�0. Note
that qD is invertible and we let q−D denote its inverse.

Remark 4.1. Often the q-oscillator algebra is defined as an abstract algebra, generated
by a, a† and q±D subject to certain relations, which naturally embeds into End(W ).
This version of the q-oscillator algebra appeared in the guise of a topological algebra for
instance in [BGKNR10, Sec. 2.3] and with slightly different conventions in [KT14]10.�

4.2. Diagonal operators from functions and an extended q-oscillator algebra. To ac-
commodate the action of the universal R and K-matrices on certain level-0 modules,
we will need an extension of the commutative subalgebra 〈q±D〉 and work over the
commutative ring C[[z]].

Denote by F the commutative algebra of functions from Z�0 to C[[z]]. For any
f ∈ F we define f (D) ∈ End(W )[[z]] via

f (D) · w j = f ( j)w j . (4.3)

10 The two vector spaces W1 and W2 introduced in [KT14, Sec. 2.3] are naturally isomorphic, so that the
two algebras Osc1 and Osc2 can be identified with the same subalgebra of End(W1) ∼= End(W2).
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Thus, we obtain an algebra embedding F → End(W )[[z]]. Now we combine this with
the maps a, a† defined above (viewed as maps on W ⊗ C[[z]], acting trivially on the
second factor).

Definition 4.2. The (extended) q-oscillator algebra is the subalgebra A ⊂ End(W )[[z]]
generated by a†, a and F(D). �

As can be verified on basis vectors, in A one has the relations

aa† = 1 − q2(D+1), a†a = 1 − q2D,

a f (D) = f (D + 1)a, f (D)a† = a† f (D + 1). (4.4)

One straightforwardly verifies that the subalgebrasF(D), 〈a†〉 and 〈a〉 are self-centralizing.
Note that the operator

ā† := −q−2Da† ∈ End(W ) (4.5)

sends w j to (1 − q−2( j+1))w j+1. Clearly, A is also generated by ā†, a and F(D).
The transformation q �→ q−1 defines an algebra automorphism of A, preserving the
subalgebra F(D), fixing the generator a and interchanging the generators a† and ā†.

4.3. Endomorphisms of W ⊗ W. The linear maps

a1 := a ⊗ IdW , a†
1 := a† ⊗ IdW , a2 := IdW ⊗ a, a†

2 := IdW ⊗ a†

together with F(D1) ∪ F(D2) generate A ⊗ A over C[[z]]. We will need a larger
subalgebra of End(W ⊗ W ): we will allow all functions of two nonnegative integers as
well as formal power series in certain locally nilpotent endomorphisms.

Denote by F (2) the commutative algebra of functions from Z�0 × Z�0 to C[[z]].
For any f ∈ F (2) we define f (D1, D2) ∈ End(W ⊗ W )[[z]] via

f (D1, D2) · (w j ⊗ wk) = f ( j, k)w j ⊗ wk, (4.6)

yielding an algebra embedding F (2) → End(W ⊗ W )[[z]]. Now note that a1a
†
2 and

a†
1a2 are locally nilpotent endomorphisms of W ⊗ W . Hence, for any gk,�, hk,� ∈ F (2)

series of the form

∑

k,��0

(a†
2)�gk,�(D1, D2)a

k
1,

∑

k,��0

(a†
1)khk,�(D1, D2)a

�
2 (4.7)

truncate when applied to any basis vector w j ⊗ w j ′ . We obtain a class of well-defined
elements of End(W⊗W )[[z]]. We denote byA(2) theC[[z]]-span of the operator-valued
formal series (4.7), which is easily seen to be a subalgebra of End(W ⊗ W )[[z]].
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4.4. The Borel representations. We introduce four level-0 representations of Uq(̂b
+).

First of all, let μ ∈ C be a free parameter. It is straightforward to check that the following
assignments define a representation υ of Uq (̂g) on W :

υ(e0) = υ( f1) = 1

1 − q2 a
†, υ(k0) = q−μ+1+2D,

υ(e1) = υ( f0) = q2

1 − q2 a(q−μ − qμ−2D), υ(k1) = qμ−1−2D . (4.8)

The module structure on W defined by υ is the evaluation Verma module: affinizations
of finite-dimensional irreducible Uq(sl2)-modules arise as quotients if μ ∈ Z>0 (also
see [KT14, Sec. 2.2]).

We will in addition consider three Uq(̂b
+)-representations which do not extend to

representations of Uq (̂g). A useful reducible representation φ : Uq(̂b
+) → End(W ) is

given by

φ(e0) = 0, φ(e1) = q

1 − q2 a, φ(k0) = qμ+1+2D, φ(k1) = q−μ−1−2D

(4.9)

which is closely related to the special evaluation homomorphism defined in [KT14,
Eq. (4.6)]. The following representations �, �̄ : Uq(̂b

+) → End(W ) play an essential
role in the definition of Baxter Q-operators:

�(e0) = 1

1 − q2 a
†, �(e1) = q2

1 − q2 a, �(k0) = q2D, �(k1) = q−2D,

�̄(e0) = q2

1 − q2 ā
†, �̄(e1) = 1

1 − q2 a, �̄(k0) = q2(D+1), �̄(k1) = q−2(D+1).

(4.10)

They correspond to the representations L±
1,a introduced in [HJ12, Def. 3.7] for suitable

a ∈ C
× (called prefundamental representations in [FH15] which considers their role in

the construction of Q-operators for closed chains).
We will henceforth repeatedly denote grading-shifted representations by the notation

(2.29). Note that the grading-shifted representation υz is an algebra homomorphism from
Uq (̂g) to End(W )[z, z−1]. Furthermore, the grading-shifted representations υz |Uq (̂b+),

φz , �z , �̄z are algebra homomorphisms from Uq(̂b
+) to End(W )[z] ⊂ End(W )[[z]].

Finally, note that �z , �̄z correspond to the representations defined by [KT14, Eq. (3.5)].

Remark 4.3. The grading-shifted representation in [VW20, Eq. (2.9)] is related to �z
by a factor of −1 in the actions of e0 and e1: in other words it is equal to �−z . Since
the Baxter Q-operators only depend on z2, see [VW20, Lem. 4.5], there are no serious
discrepancies. The benefit of the current choice is its consistency across the relevant
level-0 representations, with υ having the same sign convention as finite-dimensional
representations such as �, see Sect. 5. �
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4.5. The Uq(̂b
+)-intertwiner O. The tensor products �q−μ/2z ⊗ �̄qμ/2z and υz ⊗ φz of

shifted representations are closely related in the following sense: the two inducedUq (̂b
+)-

actions on W ⊗W are conjugate by an element in A(2) which is independent of z. More
precisely, consider the deformed exponential

eq2(x) =
∞
∑

k=0

xk

(q2; q2)k
. (4.11)

We refer to Appendix A for more detail. We now define the following element of
GL(W ⊗ W ):

O = eq2(q2a1ā
†
2)−1qμ(D1−D2)/2. (4.12)

The following statement is [KT14, Eq. (4.4)] and connects to [FH15, Thm. 3.8]; for
completeness we provide a proof in the present conventions.

Theorem 4.4. The Uq(̂b
+)-representations �q−μ/2z ⊗ �̄qμ/2z and υz ⊗φz are intertwined

by O:
O

(

�q−μ/2z ⊗ �̄qμ/2z

)

(�(u)) = (

υz ⊗ φz
)

(�(u)) O for all u ∈ Uq(̂b
+). (4.13)

Proof. The relations (A.13–A.15) can be evaluated at y = q2, yielding

qμ(D2−D1)/2eq2(q2a1ā
†
2)ā†

2 = (

q−μ/2a†
1 + q2(D1+1)+μ/2ā†

2

)

qμ(D2−D1)/2eq2(q2a1ā
†
2),

qμ(D2−D1)/2eq2(q2a1ā
†
2)

(

a1(q
−2μ − q−2D1) + q−2(D1+1)a2

) =
= (

a1q
−3μ/2 + q−μ/2−2(D1+1)a2

)

qμ(D2−D1)/2eq2(q2a1ā
†
2),

qμ(D2−D1)/2eq2(q2a1ā
†
2)q2(D1+D2+1) = q2(D1+D2+1)qμ(D2−D1)/2eq2(q2a1ā

†
2),

qμ(D2−D1)/2eq2(q2a1ā
†
2)q−2(D1+D2+1) = q−2(D1+D2+1)qμ(D2−D1)/2eq2(q2a1ā

†
2).

These directly imply (4.13) for u ∈ {e0, e1, k0, k1}. ��

4.6. Formalism for Uq(̂b
−). Recall from (3.1) the automorphism ψ which interchanges

the two Borel subalgebras. Note that the representation υ : Uq (̂g) → End(W ) satisfies
υ = υ ◦ ψ. (4.14)

Hence, it is natural to define representations of Uq(̂b
−) corresponding to �, �̄ and φ, as

follows:

�− := � ◦ ψ, �̄ − := �̄ ◦ ψ, φ− := φ ◦ ψ. (4.15)

Explicitly, we have

�−( f0) = q2

1 − q2 a, �−( f1) = 1

1 − q2 a
†, �−(k0) = q2D, �−(k1) = q−2D,

�̄ −( f0) = 1

1 − q2 a, �̄ −( f1) = q2

1 − q2 ā
†, �̄ −(k0) = q2(D+1), �̄ −(k1) = q−2(D+1),

φ−( f0) = q

1 − q2 a, φ−( f1) = 0, φ−(k0) = qμ+1+2D, φ−(k1) = q−μ−1−2D .

(4.16)
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By (3.3), whereas the grading-shifted representations �z , �̄z , φz take values in
End(W )⊗C[z], their negative counterparts �−

z , �̄ −
z , φ−

z take values in End(W )⊗C[z−1].
Since ψ is a coalgebra antiautomorphism, using (3.3) we immediately deduce the

following characterization of the tensorial opposite of the intertwiner O.

Corollary 4.5. The linear map

O21 = eq2(q2ā†
1a2)

−1qμ(D2−D1)/2 ∈ End(W ⊗ W ). (4.17)

intertwines the Uq(̂b
−)-representations �̄ −

q−μ/2z
⊗ �−

qμ/2z
and φ−

z ⊗ υz , viz.

O21
(

�̄ −
q−μ/2z

⊗ �−
qμ/2z

)

(�(u)) = (

φ−
z ⊗ υz

)

(�(u)) O21 for all u ∈ Uq(̂b
−).

(4.18)

5. L-Operators and R-Operators

In order to define L-operators, we recall the standard 2-dimensional representation
� : Uq (̂g) → End(C2) determined by

�(e0) = �( f1) =
(

0 0
1 0

)

, �(k0) =
(

q−1 0
0 q

)

,

�(e1) = �( f0) =
(

0 1
0 0

)

, �(k1) =
(

q 0
0 q−1

)

. (5.1)

In analogy with (4.14), we have

� = � ◦ ψ. (5.2)

5.1. L-operators for Uq(̂b
+)-modules. We will now obtain explicit formulas for certain

scalar multiples of the four different actions of the grading-shifted universal R-matrix
on W ⊗C

2. In these cases both Theorem 2.4 and Proposition 2.6 apply. It turns out that
the relevant linear equations all have 1-dimensional solution spaces over C[[z]]. The
following linear operators are convenient scalar multiples.

L�(z) =
(

qD a†q−D−1z
aqD+1z q−D − qD+2z2

)

, (5.3)

L�̄(z) =
(

qD+1 − q−D+1z2 ā†q−Dz
aqDz q−D−1

)

, (5.4)

Lυ(z) =
(

qD − q−D+μz2 a†q−D−2+μz
aq

(

qD−μ − q−D+μ
)

z q−D−1+μ − qD+1z2

)

, (5.5)

Lφ(z) =
(

qD+1 0
aqD+1z q−D−μ

)

. (5.6)

Remark 5.1. We have abused notation by representing linear operators on End(W ⊗C
2)

as 2 × 2 matrices with coefficients in End(W ) (as opposed to the conventional usage
that realizes operators on End(C2 ⊗ W ) in this way). �

The following result is [KT14, Cor. 4.2].
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Theorem 5.2. The above L-operators satisfy the following relation in
End(W ⊗ W ⊗ C

2)[[z]]:
O12L�(q−μ/2z)13L�̄(qμ/2z)23 = Lυ(z)13Lφ(z)23O12. (5.7)

Proof. From (2.16) one deduces

L�(q−μ/2z)13L�̄(qμ/2z)23 ∝ (�q−μ/2z ⊗ �̄qμ/2z ⊗ �)
(

(� ⊗ id)(R)
)

,

Lυ(z)13Lφ(z)23 ∝ (υz ⊗ φz ⊗ �)
(

(� ⊗ id)(R)
)

.

Now Theorem 4.4 implies (5.7) up to a scalar. By applying both sides to w0 ⊗ w0 ⊗ (
1
0 )

one observes that the scalar is 1. ��
Given the L-operators for the various Uq(̂b

+)-representations, Lemma 3.1 provides
us with L-operators for the corresponding Uq(̂b

−)-representations: L−
π (z) = Lπ (z)21

for π ∈ {�, �̄, υ, φ}. These are scalar multiples of R��−(z), R��̄ −(z), R�υ(z) and
R�φ−(z), respectively. Theorem 5.2 immediately yields the following result:

Corollary 5.3. The following relation in End(C2 ⊗ W ⊗ W )[[z]] is satisfied:
O32L−

� (q−μ/2z)13L−
�̄ (qμ/2z)12 = L−

υ (z)13L−
φ (z)12O32. (5.8)

5.2. Actions of R(z) on tensor products of infinite-dimensional Borel representations.
By Theorem 2.4, the grading-shifted universal R-matrix has well-defined actions on the
tensor product of the level-0 modules (υ,W ) and (φ−,W ) and on the tensor product of
the level-0 modules (�,W ) and (�̄ −,W ) as End(W ⊗ W )-valued formal power series.
Note that, using the terminology of Sect. 2.7, Cw0 ⊗ w0 ⊂ W ⊗ W is the subspace of
weight q−2 and hence w0⊗w0 is an eigenvector of both actions of the universal R-matrix
with invertible eigenvalues. It is convenient to use rescaled linear-operator-valued formal
power series

R��̄(z),Rυφ(z) ∈ End(W ⊗ W )[[z]], (5.9)

uniquely defined by the condition that they fix w0 ⊗ w0:

R��̄(z) ∝ (� ⊗ �̄ −)(R(z)), R��̄(z) · (w0 ⊗ w0) = w0 ⊗ w0,

Rυφ(z) ∝ (υ ⊗ φ−)(R(z)), Rυφ(z) · (w0 ⊗ w0) = w0 ⊗ w0. (5.10)

These power series will appear in the boundary factorization identity. In Appendix B we
obtain explicit expressions for R��̄(z) and Rυφ(z), although we will not need these for
the proof of the boundary factorization identity using the universal K-matrix formalism
of Sect. 3.

6. K-Operators

In this section we consider solutions of reflection equations associated to the subalgebra
Uq(k).
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6.1. RightK-operators. By Theorem 3.6, applying any of the level-0Uq (̂b
+)-representa-

tions �, �̄, υ, φ to the grading-shifted universal K-matrix associated to Uq(k) we obtain
End(W )-valued formal power series, satisfying the reflection equation (3.7). Moreover,
in terms of the terminology of Sect. 2.7, the weight subspaces of all four actions are all 1-
dimensional and therefore w0 is an eigenvector of each action with invertible eigenvalue.
We will consider the scalar multiples of these linear operators which fix w0:

Kπ (z) ∝ π(K(z)), Kπ (z) · w0 = w0. (6.1)

for π ∈ {�, �̄, υ, φ}. It is convenient to obtain explicit expressions by applying Propo-
sitions 3.7 and 3.8. These could be found independently of the universal K-matrix for-
malism, either by solving the reflection equations directly in all cases or by following
the approach outlined in [DG02,DM03,RV16] (this relies on the irreducibility of cer-
tain tensor products as Uq(k)((z))-modules; otherwise the reflection equation must be
verified directly).

First of all, the linear operator

K�(z) =
(

ξ z2 − 1 0
0 ξ − z2

)

∈ End(C2)[[z]] (6.2)

is, up to a scalar, the unique solution of the Uq(k)-intertwining condition

K�(z)�z(u) = �1/z(u)K�(z) for all u ∈ Uq(k). (6.3)

By Theorem 3.6, it is proportional to the action of the grading-shifted universal K-matrix
in the representation (�,C2).

Recall that � ◦ ψ = �. Hence, motivated by Proposition 3.7, we consider the right
reflection equation for π ∈ {�, �̄, υ, φ}:
Lπ (

y
z )Kπ (y)Lπ (yz)K�(z) = K�(z)Lπ (yz)Kπ (y)Lπ (

y
z ) ∈ End(W ⊗ C

2)[[y/z, z]].
(6.4)

Lemma 6.1. We have

K�(z) = (−q−Dξ)D(q2ξ−1z2; q2)D, K�̄(z) = (qz2)−D(q2ξ−1z−2; q2)−1
D ,

Kυ(z) = z−2D (q2−μξ−1z2; q2)D

(q2−μξ−1z−2; q2)D
, Kφ(z) = (−q−μ−D−1 ξ)D. (6.5)

Note that these expressions were already given in [BT18] in different conventions.
For completeness we sketch a proof relying on the universal K-matrix formalism.

Proof of Lemma 6.1. For Kυ(z), by a straightforward check, the intertwining condition

Kυ(z)υz(u) = υ1/z(u)Kυ(z) for all u ∈ Uq(k) (6.6)

can be solved to find Kυ(z), making use of Proposition 3.8. Since K(z) commutes with
the action of k1 it follows that Kυ(z) = f (D) for some f ∈ F . Now imposing (6.6) for
the generators e0 − q−1ξ−1k0 f1 and e1 − q−1ξk1 f0 yields the recurrence relation

f (D + 1)

f (D)
= 1 − q2(D+1)−μξ−1z2

z2 − q2(D+1)−μξ−1
.
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In particular, the linear relation (6.6) has a 1-dimensional solution space. Together with
the constraint f (0) = 1 it yields the formula given in (6.5).

For π ∈ {�, �̄, φ}, it is convenient to consider the linear space

REπ := {Kπ (y) ∈ F(D) | (6.4) is satisfied} (6.7)

and use Proposition 3.7 to find the explicit expression, relying on the second part of
Theorem 3.6 for the fact that Kπ (y) lies in F(D). Indeed, the operator K�(z) was
obtained in [VW20, Sec. 2.4] as the unique element of the 1-dimensional linear space
RE� which fixes w0. In an analogous way we obtain the result for K�̄(z).

Note that φ is a reducible representation. Indeed, the solution space of (6.4) with π =
φ is infinite-dimensional: the general solution Kφ(z) is of the form (−q−μ−D−1 ξ)D p
with p in the centralizer of a in A, i.e. a polynomial in a with coefficients in C[[z]].
Since Kφ(z) ∈ F(D), p is a scalar. The requirement that w0 is fixed forces p = 1. ��

6.2. Left K-operators. We now obtain linear-operator-valued power series satisfying a
reflection equation for the left boundary by using a well-established bijection, see [Sk88,
Eq. (15)], between its solution set and the solution set of the right reflection equation.
For fixed ˜ξ ∈ C

× we define

˜K�(z) := (1 − q2
˜ξ−1z2)−1(1 − q2

˜ξ z2)−1(K�(qz)−1|ξ �→˜ξ−1

)

=
(

q2
˜ξ z2 − 1 0

0 ˜ξ − q2z2

)

. (6.8)

Also, for π ∈ {�, �̄, υ, φ} we define

˜Kπ (z) := Kπ (qz)−1|ξ �→˜ξ−1 . (6.9)

Similarly, note that Lπ (γ z) is invertible in End(W ⊗C
2)[[z]] for all γ ∈ C. We define

˜Lπ (z) = Lπ (q2z)−1. (6.10)

Lemma 6.2. For all π ∈ {�, �̄, υ, φ} the left reflection equation holds:

˜Kπ (y)˜Lπ (yz)˜K�(z)Lπ (
y
z )=Lπ (

y
z )

˜K�(z)˜Lπ (yz)˜Kπ (y) ∈End(W ⊗ C
2)[[y/z, z]].

(6.11)

Proof. The desired equation (6.11) can be rewritten as

˜K�(z)−1
˜Lπ (yz)−1

˜Kπ (y)−1Lπ (
y
z ) = Lπ (

y
z )

˜Kπ (y)−1
˜L(yz)−1

˜K�(z)−1.

By (6.8–6.10), this is equivalent to the right-reflection equation (6.4) with y �→ qy,
z �→ qz and ξ �→ ˜ξ−1. ��

Using the explicit formulas (6.2) and (6.4) we obtain that the solutions of the left
reflection equations (6.9) are the following End(W )-valued formal power series in z:

˜K�(z) = (−qD
˜ξ)D(q4

˜ξ z2; q2)−1
D , ˜K�̄(z) = (q3z2)D(˜ξ z−2; q2)D,

˜Kυ(z) = (qz)2D (q−μ
˜ξ z−2; q2)D

(q4−μ˜ξ z2; q2)D
, ˜Kφ(z) = (−qμ+D+1

˜ξ)D. (6.12)
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7. Fusion Intertwiners Revisited

In this short intermezzo we explain how the universal K-matrix formalism naturally leads
to relations involving K-operators and Uq(b

+)-intertwiners, called fusion intertwiners,
which play a key role in the short exact sequence approach to the Q-operator. These
intertwiners were discussed in [VW20] and the relevant relations with K-matrices were
shown by a linear-algebraic computation relying on the explicit expressions of the various
constituent factors, see [VW20, Lem. 3.2]. In other words, the representation-theoretic
origin of these relations was unclear, which we now remedy.

Level-0 representations of Uq(̂b
+) are amenable to scalar modifications of the action

ofUq(h) = 〈k±1
1 〉, see also [HJ12, Rmk. 2.5]. In particular, for r ∈ C

×, define a modified
Borel representation � as follows:

�r (ei ) = �(ei ), �r (k0) = r�(k0), �r (k1) = r−1�(k1) (7.1)

and consider the grading-shifted representation �r,z := (�r )z . There exist Uq(̂b
+)-

intertwiners

ι(r) : (�qr,qz,W ) → (�r,z ⊗ �z,W ⊗ C
2),

τ (r) : (�r,z ⊗ �z,W ⊗ C
2) → (�q−1r,q−1z,W ),

called fusion intertwiners, which take part in the following short exact sequence:

0 (�qr,qz,W ) (W ⊗ C
2, �r,z ⊗ πz) (�q−1r,q−1z,W ) 0

ι(r) τ (r)

(7.2)
Explicitly11, we have

ι(r) =
(

q−Da†

−qD+1r

)

, τ (r) = (

qD, q−Dr−1a†
)

. (7.3)

Analogously to Theorem 5.2, fusion relations for the L-operators L(r, z), defined as
suitable scalar multiples of (�r,z⊗�)(R), now follow from these intertwining properties
and the coproduct formulas for R (2.16), see [VW20, Eqns. (3.8) and (3.9)].

Recalling the universal object K and Theorem 3.6, we define the corresponding K-
operator K�(r, z) as the unique scalar multiple of �r,z(K) which fixes w0 (cf. [VW20,
Prop. 2.5]). Then

(�r,z ⊗ �z)(�(K)) ∝ K�(r, z)1L(r, z2)K�(z)2 (7.4)

as a consequence of (3.19). Since K lies in a completion of Uq(̂b
+), the intertwining

properties of ι(r) and τ(r) now directly yield the following fusion relation for the K-
operator:

K�(r, z)1L(r, z2)K�(z)2ι(r) ∝ ι(r)K�(qr, qz)

τ (r)K�(r, z)1L(r, z2)K�(z)2 ∝ K�(q−1r, q−1z)τ (r),

with the scalar factors determined by applying the two sides of the equation to w0, say.
We will be able to prove a boundary counterpart of the factorization identity (5.7) using
similar ideas.

11 The sign mismatch with [VW20, Eq. (3.1)] is explained in Remark 4.3.
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We recover, with a much smaller computational burden, the key result [VW20,
Lemma 3.2] (a similar relation for left K-operators can easily be deduced from this, as
explained in the last sentence of [VW20, Proof of Lemma 3.2]). In the approach to Bax-
ter’s Q-operator using short exact sequences, the fusion relations for L and K-operators
induce fusion relations for 2-boundary monodromy operators, see [VW20, Lem. 4.2]
from which Baxter’s relation (1.1) follows by taking traces, see [VW20, Sec. 5.2].

8. Boundary Factorization Identity

In motivating and presenting the key boundary relations, it is very useful to introduce a
graphical representation of spaces and operators. Let us introduce the following pictures
for the different representations from Sects. 4 and 5:

�z = z �̄z = z φz = z

�−
z = z �̄ −

z = z φ−
z = z

υz = z �z = z

For any vector spaces V , V ′, denote by P the linear map from V ⊗ V ′ to V ′ ⊗ V such
that P(v ⊗ v′) = v′ ⊗ v for all v ∈ V , v′ ∈ V ′. Also set z = z1/z2. We then have the
following pictures for L-operators and R-operators:

PL�(z) =

z2

z1 PLυ(z) =

z2

z1

PL�̄(z) =

z2

z1 PLφ(z) =

z2

z1

PL−
� (z) =

z1

z2 PL−
υ (z) =

z1

z2

PL−
�̄ (z) =

z1

z2 PL−
φ (z) =

z1

z2

PR��̄(z) =

z2

z1 PRυφ(z) =

z2

z1
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We now make the following definitions12:

˜R��̄(z) := R��̄(q2z)−1, ˜Rυφ(z) := Rυφ(q2z)−1, (8.1)

and represent these modified R-matrices by the following pictures:

˜R��̄(z)P =

z2

z1 ˜Rυφ(z)P =

z2

z1

The various right-boundary K-matrices are represented as follows:

Kρ(z) =

z

z−1

K�̄ (z) =

z

z−1

Kυ (z) =

z

z−1

Kφ(z) =

z

z−1

The left-boundary K-matrices defined in Sect. 6.2 are represented by the natural ana-
logues of these pictures. For example:

˜Kρ(z) =

z

z−1

Making use of these pictures, we see that Theorem 5.2 and Corollary 5.3 are repre-
sented by

qμ/2z1

q−μ/2z1

z1

z1

O

z2

=
qμ/2z1

q−μ/2z1

z1

z1

O

z2

z1

z1

q−μ/2z1

qμ/2z1

O21

z2

=
z1

z1

q−μ/2z1

qμ/2z1

O21

z2

For the compatibility with the right boundary we claim that

12 These are the modified forms of the R-matrices that appear in the corresponding left reflection equations,
see [Sk88, Eq. (13)].
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qμ/2z

q−μ/2z

z

z−1

z

z−1

O =

z−1

z−1

q−μ/2z−1

qμ/2z

q−μ/2z

qμ/2z−1O21

which corresponds to the following identity in A(2):

Kυ(z)1Rυφ(z2)Kφ(z)2 O = OK�(q−μ/2z)1R��̄(z2)K�̄(qμ/2z)2, (8.2)

which we call the right boundary factorization identity. The diagrams above serve as a
motivation for the identity, which we now prove using results from Sect. 3 (an alternative
computational proof of Theorem 8.1 is given in Appendix C).

Theorem 8.1. For all μ ∈ C, all q ∈ C
× not a root of unity and all ξ ∈ C

×, relation
(8.2) is satisfied.

Proof. The proof is analogous to the proof of Theorem 5.2. We first note that
(

�q−μ/2z ⊗ �̄qμ/2z

)(

(id ⊗ ψ)(R)
) = (

�q−μ/2z ⊗ �̄ −
q−μ/2z−1

)

(R) ∝ R��̄(z2),
(

υz ⊗ φz
)(

(id ⊗ ψ)(R)
) = (

υz ⊗ φ−
z−1

)

(R) ∝ Rυφ(z2).

Noting the coproduct formula (3.19), we obtain

K�(q−μ/2z)1R��̄(z2)K�̄(qμ/2z)2 ∝ (

�q−μ/2z ⊗ �̄qμ/2z

)

(�(K)),

Kυ(z)1Rυφ(z2)Kφ(z)2 ∝ (

υz ⊗ φz
)

(�(K)).

Now Theorem 4.4 implies (8.2) up to a scalar. The fact that all factors fix w0 ⊗w0 shows
that the scalar is 1. ��

Compatibility with the left boundary requires that

z−1

z−1

O−1
21

qμ/2z

q−μ/2z

qμ/2z−1

q−μ/2z−1

=

z−1

z−1

z

z

qμ/2z

q−μ/2z

O−1
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The identity in A(2) corresponding to this is

˜K�̄(qμ/2z,˜ξ)2 ˜R��̄(z2)˜K�(q−μ/2z,˜ξ)1O−1 = O−1
˜Kφ(z,˜ξ)2 ˜Rυφ(z2)˜Kυ(z,˜ξ)1.

(8.3)

Theorem 8.2. Relation (8.3) is satisfied.

Proof. Given the definitions (6.12) and (8.1), this follows straightforwardly by inverting
(8.2) and replacing (z, ξ) �→ (qz,˜ξ−1). ��

9. Discussion

The main result of this paper is Theorem 8.1 which can be viewed as a boundary analogue
of Theorem 5.2. To establish this result, first we needed to show that all R and K-operators
involved in equation (8.2) are well-defined actions of the universal elements R and K on
the infinite-dimensional Uq(̂b

+)-modules involved. The key fact that allows for this is
thatR andK live in completions ofUq(̂b

+)⊗Uq(̂b
−) and ofUq(̂b

+), respectively. This is
very familiar forR but forK relies on the recent works [AV22a,AV22b]. Introducing the
Uq(̂b

+)-intertwiner O and the formula for �(K) given by (3.19), relation (8.2) follows
immediately from the intertwining property of O.

The open Q-operator Q(z) of [VW20] is the trace of a product of R and K-operators
over the Uq(̂b

+)-module (�z,W ) and there is a similar construction of an open Q-
operator Q(z). In a future paper, the authors will present this construction and the use
of Theorem 8.2 in deriving a boundary analogue of the factorization relation Tμ(z) ∝
Q(zq−μ/2)Q(zqμ/2). They will also develop the analogous theory for different coideal
subalgebras, in particular those for which non-diagonal solutions of the reflection equa-
tion are intertwiners. There is a quite subtle rational degeneration of the construction in
the present paper. The first-named author will study this in a separate paper, giving an
alternative approach to Q-operators for the open XXX spin chain, cf. [FS15].
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A. Deformed Pochhammer Symbols and Exponentials

This appendix is independent from the main text, but provides identities which are used
there. We review some basic theory of deformed Pochhammer symbols and exponentials
(as formal power series) with a deformation parameter p ∈ C

×, which corresponds to
q2 in the main text.

A.1. Deformed Pochhammer symbols. Let x be a formal variable. For n ∈ Z, the (finite)
deformed Pochhammer symbol (x; p)n ∈ C[[x]] is defined by

(x; p)n :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

n−1
∏

m=0

(1 − xpm) if n � 0,

−1
∏

m=n

(1 − xpm)−1 if n < 0

(A.1)

(the definition for n < 0 is understood as a product of geometric series); since its constant
coefficient is nonzero, it is invertible. For all p ∈ C

× and n ∈ Z�0 we have the following
basic identity in C[[x]], see [GR90, (I.2), (I.3)]:

(x; p)−n = (p−nx; p)−1
n = (x/p; p−1)−1

n = (−x)−n pn(n+1)/2(p/x; p)−1
n . (A.2)

Assuming |p| < 1, the infinite deformed Pochhammer symbol

(x; p)∞ :=
∞
∏

m=0

(1 − xpm) (A.3)

is an invertible formal power series with well-defined coefficients in C. The following
identity holds in C[[x]], see [GR90, (I.5)]:

(x; p)n = (x; p)∞
(pnx; p)∞ . (A.4)

A.2. Deformed exponentials. From now on we assume that p is not a root of unity. In
particular, (p; p)k 	= 0 for all k ∈ Z�0. The deformed exponential is the invertible
formal power series

ep(x) := 1φ0(0;−; p, x) =
∞
∑

k=0

xk

(p; p)k . (A.5)

The ordinary exponential formal power series arises as the termwise
limit limp→1 ep((1 − p)x) = ex . This series satisfies the functional relation

ep(px) = (1 − x)ep(x), (A.6)

see [GR90, Sec. 1.3]. Since constants are the only formal power series which are invariant
under x �→ px , an inspection of constant coefficients shows that (A.6) implies

ep(x) = 1

(x; p)∞ if |p| < 1. (A.7)
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Similarly we consider the invertible formal power series

Ep(x) := 0φ0(−;−; p,−x) =
∞
∑

k=0

pk(k−1)/2xk

(p; p)k . (A.8)

Then Ep(−x)−1 also satisfies (A.6) and by comparing constant coefficients again we
deduce ep(x) = Ep(−x)−1. By evaluating (A.2) at x = 1, we obtain Ep(−x) =
ep−1(p−1x) and hence

ep(x) = ep−1(p−1x)−1 ∈ C[[x]]. (A.9)

Deformed exponentials in x and y satisfy various useful identities in particular defor-
mations of the commutative algebra C[[x, y]]. For instance, in any algebra generated by
the symbols x and y such that yx = γ xy for γ ∈ C, the definition implies the following
identity:

yep(x) = ep(γ x)y (A.10)

which we will use repeatedly. For a survey of product formulas analogous to
exp(x) exp(y) = exp(x + y), see [Ko97]. We will need the following result.

Lemma A.1. Let x, y be elements of an algebra such that yx = pxy. The following
identities hold as formal power series in x, y:

ep(x)ep(y) = ep(x + y), (A.11)

ep(y)ep(x) = ep
(

x(1 − y)
)

ep(y)

= ep(x)ep(−xy)ep(y) = ep(x)ep
(

(1 − x)y
)

. (A.12)

Proof. (A.11) is a direct consequence of the well-known q-binomial formula, see e.g.
[GR90, Ex. 1.35]. For (A.12) see [Ko97, Prop. 3.2]. ��

A.3. Deformed exponentials as linear maps. Let V be a C-linear space. Call an operator
f on V locally nilpotent if for all v ∈ V there exists o(v) ∈ Z�0 such that f o(v)(v) = 0
(note that nilpotent operators are locally nilpotent and if V is finite-dimensional the
converse is true). If f is nilpotent, the deformed exponential ep( f ) defines an invertible
map on V . If additionally y is an indeterminate then ep(y f ) is a well-defined invertible
element of End(V )[[y]].

In the case V = W ⊗ W the following commutation relations for linear-operator
valued formal series are satisfied, expressed in terms of the linear operators a, a†, ā†,
f (D) ( f ∈ F) on W defined in Sect. 4.2.

Lemma A.2. Let y be a formal variable. In End(W ⊗ W )[[y]] the following identities
hold:

[

ep(ya1ā
†
2), f (D1 + D2)

] = [

ep(ya1ā
†
2), a1

] = [

ep(ya1ā
†
2), ā†

2

] = 0 (A.13)

for all f ∈ F and
[

ep(ya1ā
†
2), a†

1

] = ypD1 ā†
2ep(ya1ā

†
2), (A.14)

[

ep(ya1ā
†
2), p−D1a2

] = yep(ya1ā
†
2)a1 p

−D1 . (A.15)
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Proof. Note that (A.13) follows directly from the definition of the deformed exponential.
A straightforward inductive argument using (4.4) yields

[ak+1, a†] = (1 − pk+1)pDak, (A.16)

[(ā†)k+1, a]pk+1 = (1 − pk+1)(ā†)k, (A.17)

for all k ∈ Z�0, which imply (A.14) and (A.15), respectively. ��

B. Explicit Expressions for R-Operators

In this appendix we derive explicit formulas forR��̄(z) andRυφ(z), defined by (5.10) as
images of the universal R-matrix R fixing w0 ⊗ w0. We expect that these will be useful
in further studies of Baxter’s Q-operators for the open XXZ spin chain; for now they
will allow us to give a proof of the boundary factorization identity which does not rely
on the universal K-matrix formalism. First we note that, by the second part of Theorem
2.4, R��̄(z) and Rυφ(z) lie in the centralizer

A(2)
0 :=

{

X ∈ A(2)
∣

∣

∣

[

X, qD1+D2
] = 0

}

. (B.1)

One straightforwardly verifies that A(2)
0 is generated by elements of the form

∑

k�0

(ā†
2)k fk(D1, D2)a

k
1,

∑

k�0

(a†
1)k fk(D1, D2)a

k
2, fk ∈ F (2). (B.2)

Hence, elements of A(2)
0 in fact commute with all elements of the form f (D1 + D2)

( f ∈ F).

B.1. Explicit expression for Rυφ(z). We first state and prove an explicit formula for
Rυφ(z). We keep using the shorthand notation p = q2.

Theorem B.1. For all z ∈ C we have

Rυφ(z) = ep(za
†
1a2)q

(μ−1)(D2−D1)−2D1(D2+1). (B.3)

Proof. From Proposition 2.6 we deduce that Rυφ(z) is a solution of the linear relation

X (υz ⊗ φ−)(�(u)) = (υz ⊗ φ−)(�op(u))X for all u ∈ Uq(̂b
−). (B.4)

First of all, note that the element in the right-hand side of (B.3) satisfies (B.4) with
u ∈ {k0, k1} and so it suffices to prove that the vector space

X =
{

X ∈ A(2)
0

∣

∣

∣ X satisfies (B.4) for u ∈ { f0, f1}
}

(B.5)

is spanned by ep(z2a†
1a2)q(μ−1)(D2−D1)−2D1(D2+1). Using the explicit formulas (2.2),

(4.8) and (4.16), we obtain that (B.4) is equivalent to the system

X
(

z−1a1(q
−μ − qμ−2D1)q−μ−2D2−1 + q−1a2

)

=
(

z−1a1(q
−μ − qμ−2D1) + qμ−2(D1+1)a2

)

X,

Xa†
1q

μ+1+2D2 = a†
1X.
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Without loss of generality we may write X = ˜Xq(μ−1)(D2−D1)−2D1(D2+1) with ˜X ∈ A(2)
0 .

Hence (B.4) is equivalent to

z−1[˜X , a1(1 − pμ−D1)] = pμ−D1−1a2˜X − ˜X pD1a2, [˜X , a†
1] = 0. (B.6)

It is straightforward to check that the centralizer inA(2)
0 of a†

1 is the subalgebra generated

by elements of the form
∑

k�0(a
†
1)k fk(D2)ak2 with fk ∈ F . It follows that ˜X is of this

form. Therefore (B.4) is equivalent to the single equation
∑

k�0

[

(a†
1)k, a1(1 − pμ−D1)

]

fk(D2)a
k
2 =

= z
∑

k�0

(a†
1)k

(

pμ−D1−k−1 fk(D2 + 1) − pD1 fk(D2)
)

ak+1
2 .

The commutator vanishes if k = 0 so in the left-hand side we replace k by k + 1. For
k � 0 we have

[

(a†)k+1, a(1 − pμ−D)
] = (a†)k(1 − pk+1)(pμ−D−k−1 − pD).

Hence (B.4) is equivalent to the recurrence relation

(1 − pk+1)
(

pμ−D1−k−1 − pD1
)

fk+1(D2) = z
(

pμ−D1−k−1 fk(D2 + 1) − pD1 fk(D2)
)

.

Viewing F (2)(D1, D2) as an F(D2)-module, the elements p±D1 are linearly indepen-
dent. Hence the above recurrence relation is equivalent to the system

(1 − pk+1) fk+1(D) = z fk(D + 1), fk(D + 1) = fk(D).

This is in turn equivalent to fk(D) ∈ (p; p)−1
k zkC for k ∈ Z>0, as required. ��

B.2. The automorphism χ and the q-oscillator subalgebra ˜A. To obtain an expression
for Rυφ(z) in terms of deformed exponentials, it is very convenient to point out an
additional automorphism χ . It cannot be defined on all of A so we will consider a
subalgebra ˜A. First, consider the subalgebra ˜F(D) ⊂ F(D) generated by

p±D(D+1)/2, γ D, (pγ̃ ; p)±1
D , (pγ z2; p)D, (−γ z2)−D(pγ −1z−2; p)−1

D

for all γ ∈ C
× and γ̃ ∈ C

×\pZ.
For elements of ˜F(D), unlike general elements of F(D), the symbol D can be for-

mally evaluated at negative integers. Accordingly, we define an involutive automorphism
χ of ˜F(D) accomplishing the formal replacement D �→ −D − 1. To be more precise,
we set

χ
(

p±D(D+1)/2) = p±D(D+1)/2, χ
(

γ D) = γ −D−1,

χ
(

(pγ̃ ; p)±1
D

) = (1 − γ̃ )∓1 p±D(D+1)/2(−γ̃ )∓D(pγ̃ −1; p)∓1
D ,

χ
(

(pγ z2; p)D
) = (1 − γ z2)−1 pD(D+1)/2(−γ z2)−D(pγ −1z−2; p)−1

D ,

χ
(

(−γ z2)−D(pγ −1z−2; p)−1
D

) = (1 − γ z2)p−D(D+1)/2(pγ z2; p)D. (B.7)
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We denote the subalgebra of End(W ) generated by a†, a and ˜F(D) by ˜A. It is
straightforward to check that χ extends to a (non-involutive) algebra automorphism of
˜A by means of the assignments

χ(a) = ā†, χ(a†) = a. (B.8)

We can formulate a completion of the tensor product ˜A ⊗ ˜A in a similar way as for
A⊗A. More precisely, we consider the subalgebra ˜F (2) ofF (2) generated by the subsets
˜F(D1), ˜F(D2) and the special elements p±D1(D2+1). The completed tensorial square of
˜A is defined to be the subalgebra ˜A(2) of End(W ⊗ W ) generated by the elements (4.7)
with gk,�, hk,� ∈ ˜F (2). Note that the boundary factorization identity (8.2) is an identity
in the subalgebra ˜A(2) ⊂ End(W ⊗ W )[[z]].

The automorphism

χ(2) := σ ◦ (χ ⊗ χ−1) (B.9)

of ˜A ⊗ ˜A naturally extends to an automorphism of ˜A(2), fixing p±D1(D2+1) and acting
termwise on power series in locally nilpotent operators.

Remark B.2. The map χ can be seen as an infinite-dimensional version of conjugation
by anti-diagonal matrices; certain Uq(̂b

+)-representations are naturally related this way.
For instance, for the 2-dimensional representation �, note that Ad(J ) ◦ � = � ◦ �

where Ad denotes ‘conjugation by’ and J = (

0 1
1 0

)

. In the same way, χ relates the
prefundamental representations � and �̄ up to a twist by the diagram automorphism �:
χ ◦ � = �̄ ◦ �. Hence, the condition (2.19) and the 1-dimensionality of the solution
space of the relevant linear equation implies (Ad(J )⊗χ)(L�(z)) = L�̄(z). At the same
time, a suitable scalar multiple of R��(z), i.e. the R-matrix for the XXZ chain, is fixed
by Ad(J ⊗ J ) and we will see in Sect. B.3 that the same statement is true for R��̄(z)
and χ(2).

From (3.5) it follows that �(Uq(k)) = Uq(k)|ξ �→ξ−1 . Hence, the boundary counter-
parts of the above relations also involve inversion of the free parameter ξ :

Ad(J )
(

K�(z)
)|ξ �→ξ−1 = −ξ K�(z), χ(K�(z))|ξ �→ξ−1 = q−1(z2 − ξ−1)−1K�̄(z).

In fact, applying χ ⊗ Ad(J ) to the reflection equation (6.4) with π = � and inverting ξ

we see that

K�(z) �→ χ(K�(z))|ξ �→ξ−1

defines a bijection: RE� → RE�̄ of the solution spaces defined in (6.7). �
We can use the map χ(2) to generate further relations similar to those in Lemma A.2.

Lemma B.3. Let y be a formal parameter. In End(W ⊗W )[[y]] the following identities
hold:

[ā†
2, ep(ya

†
1a2)] = yep(ya

†
1a2)a

†
1 p

−D2−1, (B.10)

[ā†
1a2, ep(ya1ā

†
2)] = y

(

ep(ya1ā
†
2)p−D1−1 − p−D2−1ep(ya1ā

†
2)

)

. (B.11)
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Proof. In this proof we view the algebraA as a subalgebra of End(W )[[y]], and similarly
for A(2). To prove (B.10), first we apply χ(2) to (A.14), obtaining

[ep(ya1ā
†
2), a2] = ya1 p

−D2−1ep(ya1ā
†
2). (B.12)

Now consider the unique involutive algebra anti-automorphism η : A → A which
exchanges a and a† and fixes f (D) for all f ∈ F and the unique involutive algebra
anti-automorphism η : A → Awhich exchanges a and ā† and fixes f (D) for all f ∈ F .
Then η(2) := η⊗η is an algebra antiautomorphism of A⊗A. It extends in a natural way
to an algebra antiautomorphism of A(2). By applying η(2) to (B.12) we obtain (B.10).

Finally, to prove (B.11), upon right-multiplying (A.15) by pD1+D2+1 we obtain

[ep(ya1ā
†
2), a1 p

D2 ] = yep(ya1ā
†
2)a1 p

D2 . (B.13)

From (A.14) and (B.13) it follows that

[ep(ya1ā
†
2), a†

1a2 p
D2 ] = y

(

ā†
2 p

D1ep(ya1ā
†
2)a2 + a†

1ep(ya1ā
†
2)a1

)

pD2

= y
(

pD1ep(ya1ā
†
2)

(

pD2 − 1
)

+
(

1 − pD1
)

ep(ya1ā
†
2)pD2

)

= y
(

ep(ya1ā
†
2)pD2 − pD1ep(ya1ā

†
2)

)

. (B.14)

Now (B.11) follows as the χ(2)-image of (B.14). ��

B.3. Explicit expression for R��̄(z). To aid the computation of R��̄(z), consider the

subalgebra ˜A(2)
0 = ˜A(2) ∩ A(2)

0 , which is preserved by χ(2).

Lemma B.4. R��̄(z) is a ˜A(2)
0 -valued formal power series whose coefficients are fixed

by χ(2).

Proof. It is clear from (4.10) and (4.16) that �⊗ �̄ − takes values in ˜A⊗ ˜A ⊂ ˜A(2). Now
recall (2.20) and note that the factor κ acts as pD1(D2+1). Furthermore, noting the form
of (�z ⊗ id)(�) given by (2.26) with the components �λ lying in Uq (̂n

+)λ ⊗Uq (̂n
+)−λ

(λ ∈ ̂Q+), we obtain that the action of R(z) on (� ⊗ �̄ −,W ⊗ W ) is by an element of
˜A(2)

0 . For the second part, note that

χ(2) ◦ (� ⊗ �̄ −) = (χ−1 ⊗ χ) ◦ (�̄ − ⊗ �) ◦ σ = (� ⊗ �̄ −) ◦ (ω ⊗ ω) ◦ σ.

Applying this toR(z), making use of (2.27), (2.24) and (2.18), we obtain χ(2)(R��̄(z)) =
R��̄(z). ��

In the derivation of the formula for R��̄(z), we rely on the following result.

Lemma B.5. The centralizer of the subset {a†
1, ā†

2} in A(2) is equal to C[[z]].
Proof. This centralizer is the intersection of the centralizer of a†

1 and the centralizer of

ā†
2 , which are easily found to be equal to

{

∑

k,��0

(a†
1)k fk,�(D2)a

�
2

∣

∣

∣

∣

fk,� ∈ F
}

,

{

∑

k,��0

(ā†
2)kgk,�(D1)a

�
1

∣

∣

∣

∣

gk,� ∈ F
}

,

respectively. Clearly their intersection is trivial. ��
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Now we are ready to state and prove a formula for R��̄(z) in terms of deformed
exponentials.

Theorem B.6. For all z we have

R��̄(z) = eq2(q3za1ā
†
2)eq2(q−1za†

1a2)q
−2D1(D2+1). (B.15)

Proof. Clearly, w0 ⊗ w0 is fixed by the expression on the right-hand side of (B.15). In
the following we initially work over the ring C[[z, z2]] for some new indeterminate z2
and write z1 = zz2. By applying �z1 ⊗�1 ⊗ �̄ −

z2
to (2.17) and left and right-multiplying

by L−
�̄,23(z

−1
2 )−1 we obtain

R��̄(z)12L�(z1)13L−
�̄ (z−1

2 )−1
32 = L−

�̄ (z−1
2 )−1

32 L�(z1)13R��̄(z)12 (B.16)

an equation in ( ˜A(2) ⊗ End(C2))[[z2]]. By a direct computation we obtain

L−
�̄ (z−1

2 )−1 = 1

z2
2 − 1

(

q−D−1z2
2 ā†q−D−1z2

aqD−1z2 qD+1z2
2 − q−D−1

)

∈ End(C2) ⊗ ˜A. (B.17)

Now we consider the equation

(z2
2 − 1)X12L�(z1)13L−

�̄ (z−1
2 )−1

32 = (z2
2 − 1)L−

�̄ (z−1
2 )−1

32 L�(z1)13X12 (B.18)

in ( ˜A(2) ⊗ End(C2))[[z2]], for some X ∈ ˜A(2)
0 such that χ(2)(X) = X . It suffices to

prove that

X =
{

X ∈ ˜A(2)
0

∣

∣

∣ X satisfies (B.18) and is fixed by χ(2)
}

, (B.19)

which by Lemma B.4 contains (�z ⊗ �̄ −)(R), is spanned by the element given in the
right-hand side of (B.15).

By considering explicit expressions for (z2
2 − 1)L�(z1)13L−

�̄ (z−1
2 )−1

32 and

(z2
2 − 1)L−

�̄ (z−1
2 )−1

32 L�(z1)13, we obtain that (B.18) amounts to the system

X
(

qD1−D2−1 − a†
1a2q

−D1+D2−2z
) = (

qD1−D2−1 − a1ā
†
2q

D1−D2 z
)

X,

X
(

(

ā†
2q

D1−D2−1 + a†
1q

−D1−D2−2z
) − a†

1q
−D1+D2 zz2

2

)

=
=

(

ā†
2q

−D1−D2−1 − (

a†
1q

−D1−D2−2 + ā†
2q

D1−D2+1z
)

zz2
2

)

X,

X
(

a2q
−D1+D2−1 − (

a1q
D1−D2 + a2q

D1+D2+1z
)

zz2
2

)

=
=

(

(

a2q
D1+D2−1 + a1q

D1−D2 z
) − a1q

D1+D2+2zz2
2

)

X,

X
(

q−D1+D2+1 + qD1−D2+1z2 − a1ā
†
2q

D1−D2 z
)

=
(

q−D1+D2+1 + qD1−D2+1z2 − a†
1a2q

−D1+D2−2z
)

X

for X ∈ ˜A(2)
0 fixed by χ(2). Since C[[z, z2]] ∼= (C[[z]])[[z2]], considering expansion

coefficients with respect to z2, we can use [X, qD1+D2 ] = 0 to deduce that the above
system is equivalent to
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Xa2q
−2D1 = (

a2 + a1q
−2D2+1z

)

X, a1X = X
(

a1q
−2(D2+1) + q−1a2z

)

,

Xa†
1q

2(D2+1) = (

a†
1 + ā†

2q
2D1+3z

)

X, ā†
2 X = X

(

ā†
2q

2D1 + q−1a†
1 z

)

, (B.20)
[

X, q2D1
] =(

Xa†
1a2q

2D2−1 − a1ā
†
2q

2D1+1X
)

z,
[

X, q2D2 + q2D1 z2] =(

Xa1ā
†
2q

2D1−1 − a†
1a2q

2D2−3X
)

z. (B.21)

Note that q−2D1(D2+1) ∈ ˜A(2)
0 is fixed by χ(2). Hence without loss of generality we may

write

X = ˜Xq−2D1(D2+1), (B.22)

for some ˜X ∈ ˜A(2)
0 fixed by χ(2). The system (B.20–B.21) is equivalent to

[˜X , a2] = q−2D2+1a1˜Xz, [a1, ˜X ] = ˜Xq2D1−1a2z, (B.23)

[˜X , a†
1] = ā†

2q
2D1+3

˜Xz, [ā†
2, ˜X ] = ˜Xa†

1q
−2D2−3z, (B.24)

[

˜X , q2D1
] = (

˜Xa†
1a2q

2D1−1 − a1ā
†
2q

2D1+1
˜X

)

z, (B.25)
[

˜X , q2D2 + q2D1 z2] = (

˜Xa1ā
†
2q

2D2+3 − a†
1a2q

2D2−3
˜X

)

z. (B.26)

Since χ(2) fixes ˜X , the equations in (B.23) and the equations in (B.24) are pairwise
equivalent. At the same time, the system (B.23–B.24) implies (B.25) and (B.26). To
show this, since [˜X , q2D1 ] = [a†

1a1, ˜X ] from (B.23–B.24) we obtain

[˜X , q2D1 ] + a1ā
†
2q

2D1+1
˜Xz − ˜Xa†

1a2q
2D1−1z =

= a1ā
†
2q

2D1+1
˜Xz − [˜X , a†

2]a1 + a†
1[a1, ˜X ] − ˜Xa†

1a2q
2D1−1z

= (

ā†
2q

2D1+3[a1, ˜X ] − [˜X , a†
1]a2q

2D1−1)z,

which vanishes, thereby recovering (B.25). Applyingχ(2) to (B.25) we obtain [˜X , q−2D2 ]
= (

˜Xa†
1a2q−2D2−1 −a1ā

†
2q

−2D2+1
˜X

)

z. Left-and-right multiplying this by q2D2 and us-
ing (B.23–B.24) to rewrite the result we obtain

[˜X , q2D2 ] = (

ā†
2
˜Xa1q

2D2+3 − q2D2−1a†
1
˜Xa2

)

z. (B.27)

Finally, using (B.27) and again (B.23–B.24), we derive that

[˜X , q2D2 + q2D1 z2] − ˜Xa1ā
†
2q

2D2+3z + a†
1a2q

2D2−3
˜Xz =

= ā†
2
˜Xa1q

2D2+3z − q2D2−1a†
1
˜Xa2z + [˜X , q2D1 ]z2+

− (ā†
2
˜X − ˜Xa†

1q
−2D2−3z)a1q

2D2+3z + a†
1q

2D2−1(˜Xa2 − a1q
−2D2+1

˜Xz)z

= (

˜Xa†
1a1 + a†

1a1˜X + [˜X , 1 − a†
1a1]

)

z2

which vanishes, thereby proving (B.26) as well.
We have obtained that the system (B.23–B.26) is equivalent to the system (B.24).

Writing p = q2, without loss of generality we set

˜X = Yep(q
3za1ā

†
2)ep(q

−1za†
1a2)
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for some Y ∈ ˜A(2)
0 fixed by χ(2), noting that ep(q3za1ā

†
2) and ep(q−1za†

1a2) lie in ˜A(2)
0

and are fixed by χ(2). The theorem now follows from the following claim.

Claim: (B.24) is satisfied if and only if Y ∈ C[[z]].
In the special case Y = 1, (B.24) is indeed satisfied:

[˜X , a†
1] − ā†

2q
2D1+3z˜X =

=
(

[ep(q3za1ā
†
2), a†

1] − ā†
2q

2D1+3zep(q
3za1ā

†
2)

)

ep(q
−1za†

1a2),

[ā†
2, ˜X ] − ˜Xa†

1q
−2D2−3z =

= ep(q
3za1ā

†
2)

(

[ā†
2, ep(q

−1za†
1a2)] − ep(q

−1za†
1a2)a

†
1q

−2D2−3z
)

,

with the expressions in parentheses vanishing by virtue of (A.14) and (B.10) (with
y = q−1z).

For general Y we therefore have

[˜X , a†
1] − ā†

2q
2D1+3z˜X = [Y, a†

1]ep(q3za1ā
†
2)ep(q

−1za†
1a2),

[ā†
2, ˜X ] − ˜Xa†

1q
−2D2−3z = [ā†

2,Y ]ep(q3za1ā
†
2)ep(q

−1za†
1a2).

Both right-hand sides vanish, i.e. (B.24) is indeed satisfied, if and only if Y lies in the
centralizer in ˜A(2) of {a†

1, ā†
2}, which is trivial by Lemma B.5. This proves the claim. ��

C. An Alternative Proof of the Main Theorem

In this part of the appendix we give a proof of the boundary factorization identity (8.2)
independent of the universal K-matrix formalism, instead relying on the explict ex-
pressions obtained in Appendix B. Before we state and prove a key lemma, note that
expressions of the form ep(γ Dy) where γ ∈ C

× and y is an indeterminate give rise to
well-defined End(W )-valued formal power series, sending w j to ep(γ j y)w j .

Lemma C.1. Let y be a formal parameter and let p be a nonzero complex number, not
a root of unity. In End(W ⊗ W )[[y]] we have the identities

ep(pa1ā
†
2)(y; p)D1 = (y; p)D1ep(−a1ā

†
2 p

D1 y)ep(pa1ā
†
2) (C.1)

ep(pa1ā
†
2)(p1−D1 y; p)−1

D1
ep(pyā

†
1a2) = ep(pyā

†
1a2)(p

1−D2 y; p)−1
D2
ep(pa1ā

†
2).

(C.2)

Proof. Note that

W ⊗ W =
⊕

m∈Z�0

(W ⊗ W )m, (W ⊗ W )m :=
⊕

j,k�0
j+k=m

Cw j ⊗ wk .

Because each factor in (C.1–C.2) preserves each finite-dimensional subspace (W⊗W )m ,
it suffices to prove the restrictions of (C.1–C.2) to (W⊗W )m , wherem ∈ Z�0 is fixed but
arbitrary. Note that on (W ⊗W )m the operators appearing as arguments of the deformed
exponentials are nilpotent. Therefore the operators on the left- and right-hand side of
the restricted equations depend rationally on p and hence it suffices to prove them with
p restricted to an open subset of C.
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We will prove the restriction of (C.1) to (W ⊗ W )m for all p ∈ C such that |p| < 1.

Combining (A.4) and (A.7) we obtain (y; p)D = ep(pD y)
ep(y)

; as a consequence, (C.1) is
equivalent to

ep(pa1ā
†
2)ep(p

D1 y) = ep(p
D1 y)ep(−a1ā

†
2 p

D1 y)ep(pa1ā
†
2). (C.3)

But this equation follows directly from (A.12) and the observation (a1ā
†
2)(pD1 y) =

p(pD1 y)(a1ā
†
2).

On the other hand,13 we will prove the restricted version of (C.2) for all p ∈ C
×

such that |p| > 1. In this case, for all j ∈ Z�0 we have

(p1− j y; p)−1
j = (y; p−1)−1

j = (p− j y; p−1)∞
(y; p−1)∞

∈ C[[y]].
From (A.7) and (A.9) we deduce the identity

(p− j y; p−1)∞ = ep−1(p− j y)−1 = ep(p
1− j y) ∈ C[[y]].

Hence (p1−Dy; p)−1
D = (y; p−1)−1∞ ep(p1−Dy) in End(W )[[y]] and (C.2) is equivalent

to

ep(pa1ā
†
2)ep(p

1−D1 y)ep(pyā
†
1a2) = ep(pyā

†
1a2)ep(p

1−D2 y)ep(pa1ā
†
2). (C.4)

To prove (C.4), note that (B.11) can be evaluated at y = p, and the result can be
rewritten as

ep(pa1ā
†
2)

(

p−D1 + ā†
1a2

) = (

p−D2 + ā†
1a2

)

ep(pa1ā
†
2).

By iteration we obtain

ep(pa1ā
†
2)ep

(

p1−D1 y + pyā†
1a2

) = ep
(

p1−D2 y + pyā†
1a2

)

ep(pa1ā
†
2). (C.5)

Note that (ā†
1a2)p1−D1 = p p1−D1(ā†

1a2) and p1−D2(ā†
1a2) = p (ā†

1a2)p1−D2 . Apply-
ing (A.11), we obtain (C.4), as required. ��
Alternative proof of Theorem 8.1. By virtue of (4.12), the desired identity, viz.

Kυ(z)1Rυφ(z2)Kφ(z)2 O = OK�(q−μ/2z)1R��̄(z2)K�̄(qμ/2z)2 (C.6)

for arbitrary μ ∈ C and q, ξ ∈ C
× such that q is not a root of unity, is equivalent to

ep(pa1ā
†
2)Kυ(z)1Rυφ(z2)Kφ(z)2ep(pa1ā

†
2)−1 =

= qμ(D1−D2)/2K�(q−μ/2z)1R��̄(z2)K�̄(qμ/2z)2q
μ(D2−D1)/2 (C.7)

where p = q2. The strategy of the proof is as follows. We move various simple factors
in F (2)(D1, D2) to the right in both sides of (C.7), thus bringing them to a similar
form. Then more advanced product formulas involving q-exponentials and finite q-
Pochhammer symbols yield the desired equality.

More precisely, we set γ = pq−μξ−1 ∈ C
× and from (A.2) deduce

(γ z−2; p)−1
j = p j (1− j)/2(−γ −1z2) j (p1− jγ −1z2; p)−1

j

for all j ∈ Z�0. Using the identities q−D2
a† = −qā†q−D2

and q−D2
a = aq2D−1q−D2

,
we obtain, for the left-hand side of (C.7),

13 We will need (C.2) with |p| < 1, but we are not aware of a direct proof of this.
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ep(pa1ā
†
2)Kυ(z)1Rυφ(z2)Kφ(z)2ep(pa1ā

†
2)−1 =

= ep(pa1ā
†
2)

( − γ −1q1−D1
)D1(γ z2; p)D1(p

1−D1γ −1z2; p)−1
D1
ep(z

2a†
1a2)·

· q(2μ−1)D1−2D2−2D1D2−D2
2 (−ξ)D2ep(pa1ā

†
2)−1

= ep(pa1ā
†
2)(γ z2; p)D1(p

1−D1γ −1z2; p)−1
D1

·
· ep(pγ −1z2ā†

1a2)(−q−D1−D2−2ξ)D1+D2ep(pa1ā
†
2)−1

= ep(pa1ā
†
2)(γ z2; p)D1(p

1−D1γ −1z2; p)−1
D1

·
· ep(pγ −1z2ā†

1a2)ep(pa1ā
†
2)−1(−q−D1−D2−2ξ)D1+D2 . (C.8)

Similarly, for the right-hand side of (C.7) we obtain

qμ(D1−D2)/2K�(q−μ/2z)1R��̄(z2)K�̄(qμ/2z)2q
μ(D2−D1)/2 =

= (γ z2; p)D1q
μ(D1−D2)/2−D2

1 (−ξ)D1ep(q
3z2a1ā

†
2)ep(q

−1z2a†
1a2) ·

·(p1−D2γ −1z2; p)−1
D2
qμ(D2−D1)/2−2(D1+D2)−2D1D2−D2

2 (−ξ)D2

= (γ z2; p)D1ep(−a1ā
†
2q

2D1γ z2)

ep(pγ
−1z2ā†

1a2)(p
1−D2γ −1z2; p)−1

D2
(−q−D1−D2−2ξ)D1+D2 . (C.9)

Therefore (C.7) is equivalent to

ep(pa1ā
†
2)(γ z2; p)D1(p

1−D1γ −1z2; p)−1
D1
ep(pγ

−1z2ā†
1a2)ep(pa1ā

†
2)−1 =

= (γ z2; p)D1ep(−a1ā
†
2 p

D1γ z2)ep(pγ
−1z2ā†

1a2)(p
1−D2γ −1z2; p)−1

D2
.

(C.10)

Applying (C.1) with y = γ z2 and (C.2) with y = γ −1z2, we deduce (C.10), as re-
quired. ��
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